// SPDX-License-Identifier: GPL-2.0-only /* * QTI CE device driver. * * Copyright (c) 2010-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023-2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux/qcedev.h" #include #include #include #include #include "qcedevi.h" #include "qce.h" #include "qcedev_smmu.h" #include "qcom_crypto_device.h" #define CACHE_LINE_SIZE 64 #define CE_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE #define MAX_CEHW_REQ_TRANSFER_SIZE (128*32*1024) /* * Max wait time once a crypto request is submitted. */ #define MAX_CRYPTO_WAIT_TIME 1500 /* * Max wait time once a offload crypto request is submitted. * This is low due to expected timeout and key pause errors. * This is temporary, and we can use the 1500 value once the * core irqs are enabled. */ #define MAX_OFFLOAD_CRYPTO_WAIT_TIME 50 #define MAX_REQUEST_TIME 5000 enum qcedev_req_status { QCEDEV_REQ_CURRENT = 0, QCEDEV_REQ_WAITING = 1, QCEDEV_REQ_SUBMITTED = 2, QCEDEV_REQ_DONE = 3, }; static uint8_t _std_init_vector_sha1_uint8[] = { 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89, 0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76, 0xC3, 0xD2, 0xE1, 0xF0 }; /* standard initialization vector for SHA-256, source: FIPS 180-2 */ static uint8_t _std_init_vector_sha256_uint8[] = { 0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85, 0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A, 0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C, 0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19 }; #define QCEDEV_CTX_KEY_MASK 0x000000ff #define QCEDEV_CTX_USE_HW_KEY 0x00000001 #define QCEDEV_CTX_USE_PIPE_KEY 0x00000002 static DEFINE_MUTEX(send_cmd_lock); static DEFINE_MUTEX(qcedev_sent_bw_req); static DEFINE_MUTEX(hash_access_lock); static dev_t qcedev_device_no; static struct class *driver_class; static struct device *class_dev; static const struct of_device_id qcedev_match[] = { { .compatible = "qcom,qcedev"}, { .compatible = "qcom,qcedev,context-bank"}, {} }; MODULE_DEVICE_TABLE(of, qcedev_match); static int qcedev_control_clocks(struct qcedev_control *podev, bool enable) { unsigned int control_flag; int ret = 0; if (podev->ce_support.req_bw_before_clk) { if (enable) control_flag = QCE_BW_REQUEST_FIRST; else control_flag = QCE_CLK_DISABLE_FIRST; } else { if (enable) control_flag = QCE_CLK_ENABLE_FIRST; else control_flag = QCE_BW_REQUEST_RESET_FIRST; } switch (control_flag) { case QCE_CLK_ENABLE_FIRST: ret = qce_enable_clk(podev->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); return ret; } ret = icc_set_bw(podev->icc_path, podev->icc_avg_bw, podev->icc_peak_bw); if (ret) { pr_err("%s Unable to set high bw\n", __func__); ret = qce_disable_clk(podev->qce); if (ret) pr_err("%s Unable disable clk\n", __func__); return ret; } break; case QCE_BW_REQUEST_FIRST: ret = icc_set_bw(podev->icc_path, podev->icc_avg_bw, podev->icc_peak_bw); if (ret) { pr_err("%s Unable to set high bw\n", __func__); return ret; } ret = qce_enable_clk(podev->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); ret = icc_set_bw(podev->icc_path, 0, 0); if (ret) pr_err("%s Unable to set low bw\n", __func__); return ret; } break; case QCE_CLK_DISABLE_FIRST: ret = qce_disable_clk(podev->qce); if (ret) { pr_err("%s Unable to disable clk\n", __func__); return ret; } ret = icc_set_bw(podev->icc_path, 0, 0); if (ret) { pr_err("%s Unable to set low bw\n", __func__); ret = qce_enable_clk(podev->qce); if (ret) pr_err("%s Unable enable clk\n", __func__); return ret; } break; case QCE_BW_REQUEST_RESET_FIRST: ret = icc_set_bw(podev->icc_path, 0, 0); if (ret) { pr_err("%s Unable to set low bw\n", __func__); return ret; } ret = qce_disable_clk(podev->qce); if (ret) { pr_err("%s Unable to disable clk\n", __func__); ret = icc_set_bw(podev->icc_path, podev->icc_avg_bw, podev->icc_peak_bw); if (ret) pr_err("%s Unable to set high bw\n", __func__); return ret; } break; default: return -ENOENT; } return 0; } static void qcedev_ce_high_bw_req(struct qcedev_control *podev, bool high_bw_req) { int ret = 0; if(podev == NULL) return; mutex_lock(&qcedev_sent_bw_req); if (high_bw_req) { if (podev->high_bw_req_count == 0) { ret = qcedev_control_clocks(podev, true); if (ret) goto exit_unlock_mutex; ret = qce_set_irqs(podev->qce, true); if (ret) { pr_err("%s: could not enable bam irqs, ret = %d", __func__, ret); qcedev_control_clocks(podev, false); goto exit_unlock_mutex; } } podev->high_bw_req_count++; } else { if (podev->high_bw_req_count == 1) { ret = qce_set_irqs(podev->qce, false); if (ret) { pr_err("%s: could not disable bam irqs, ret = %d", __func__, ret); goto exit_unlock_mutex; } ret = qcedev_control_clocks(podev, false); if (ret) goto exit_unlock_mutex; } podev->high_bw_req_count--; } exit_unlock_mutex: mutex_unlock(&qcedev_sent_bw_req); } #define QCEDEV_MAGIC 0x56434544 /* "qced" */ static int qcedev_open(struct inode *inode, struct file *file); static int qcedev_release(struct inode *inode, struct file *file); static int start_cipher_req(struct qcedev_control *podev, int *current_req_info); static int start_offload_cipher_req(struct qcedev_control *podev, int *current_req_info); static int start_sha_req(struct qcedev_control *podev, int *current_req_info); static const struct file_operations qcedev_fops = { .owner = THIS_MODULE, .unlocked_ioctl = qcedev_ioctl, .open = qcedev_open, .release = qcedev_release, }; static struct qcedev_control qce_dev[] = { { .magic = QCEDEV_MAGIC, }, }; #define MAX_QCE_DEVICE ARRAY_SIZE(qce_dev) #define DEBUG_MAX_FNAME 16 #define DEBUG_MAX_RW_BUF 1024 struct qcedev_stat { u32 qcedev_dec_success; u32 qcedev_dec_fail; u32 qcedev_enc_success; u32 qcedev_enc_fail; u32 qcedev_sha_success; u32 qcedev_sha_fail; }; static struct qcedev_stat _qcedev_stat; static struct dentry *_debug_dent; static char _debug_read_buf[DEBUG_MAX_RW_BUF]; static int _debug_qcedev; static struct qcedev_control *qcedev_minor_to_control(unsigned int n) { int i; for (i = 0; i < MAX_QCE_DEVICE; i++) { if (qce_dev[i].minor == n) return &qce_dev[n]; } return NULL; } static int qcedev_open(struct inode *inode, struct file *file) { struct qcedev_handle *handle; struct qcedev_control *podev; podev = qcedev_minor_to_control(MINOR(inode->i_rdev)); if (podev == NULL) { pr_err("%s: no such device %d\n", __func__, MINOR(inode->i_rdev)); return -ENOENT; } handle = kzalloc(sizeof(struct qcedev_handle), GFP_KERNEL); if (handle == NULL) return -ENOMEM; handle->cntl = podev; file->private_data = handle; qcedev_ce_high_bw_req(podev, true); mutex_init(&handle->registeredbufs.lock); INIT_LIST_HEAD(&handle->registeredbufs.list); return 0; } static int qcedev_release(struct inode *inode, struct file *file) { struct qcedev_control *podev; struct qcedev_handle *handle; handle = file->private_data; podev = handle->cntl; if (podev != NULL && podev->magic != QCEDEV_MAGIC) { pr_err("%s: invalid handle %pK\n", __func__, podev); } if (podev) qcedev_ce_high_bw_req(podev, false); if (qcedev_unmap_all_buffers(handle)) pr_err("%s: failed to unmap all ion buffers\n", __func__); kfree_sensitive(handle); file->private_data = NULL; return 0; } static void req_done(unsigned long data) { struct qcedev_control *podev = (struct qcedev_control *)data; struct qcedev_async_req *areq; unsigned long flags = 0; struct qcedev_async_req *new_req = NULL; spin_lock_irqsave(&podev->lock, flags); areq = podev->active_command; podev->active_command = NULL; if (areq) { areq->state = QCEDEV_REQ_DONE; if (!areq->timed_out) complete(&areq->complete); } /* Look through queued requests and wake up the corresponding thread */ if (!list_empty(&podev->ready_commands)) { new_req = container_of(podev->ready_commands.next, struct qcedev_async_req, list); list_del(&new_req->list); new_req->state = QCEDEV_REQ_CURRENT; wake_up_interruptible(&new_req->wait_q); } spin_unlock_irqrestore(&podev->lock, flags); } void qcedev_sha_req_cb(void *cookie, unsigned char *digest, unsigned char *authdata, int ret) { struct qcedev_sha_req *areq; struct qcedev_control *pdev; struct qcedev_handle *handle; uint32_t *auth32 = (uint32_t *)authdata; areq = (struct qcedev_sha_req *) cookie; if (!areq || !areq->cookie) return; handle = (struct qcedev_handle *) areq->cookie; pdev = handle->cntl; if (!pdev) return; if (digest) memcpy(&handle->sha_ctxt.digest[0], digest, 32); if (authdata) { handle->sha_ctxt.auth_data[0] = auth32[0]; handle->sha_ctxt.auth_data[1] = auth32[1]; } tasklet_schedule(&pdev->done_tasklet); }; void qcedev_cipher_req_cb(void *cookie, unsigned char *icv, unsigned char *iv, int ret) { struct qcedev_cipher_req *areq; struct qcedev_handle *handle; struct qcedev_control *podev; struct qcedev_async_req *qcedev_areq; areq = (struct qcedev_cipher_req *) cookie; if (!areq || !areq->cookie) return; handle = (struct qcedev_handle *) areq->cookie; podev = handle->cntl; if (!podev) return; qcedev_areq = podev->active_command; if (iv && qcedev_areq) memcpy(&qcedev_areq->cipher_op_req.iv[0], iv, qcedev_areq->cipher_op_req.ivlen); tasklet_schedule(&podev->done_tasklet); }; static int start_cipher_req(struct qcedev_control *podev, int *current_req_info) { struct qcedev_async_req *qcedev_areq; struct qce_req creq; int ret = 0; memset(&creq, 0, sizeof(creq)); /* start the command on the podev->active_command */ qcedev_areq = podev->active_command; qcedev_areq->cipher_req.cookie = qcedev_areq->handle; if (qcedev_areq->cipher_op_req.use_pmem == QCEDEV_USE_PMEM) { pr_err("%s: Use of PMEM is not supported\n", __func__); goto unsupported; } creq.pmem = NULL; switch (qcedev_areq->cipher_op_req.alg) { case QCEDEV_ALG_DES: creq.alg = CIPHER_ALG_DES; break; case QCEDEV_ALG_3DES: creq.alg = CIPHER_ALG_3DES; break; case QCEDEV_ALG_AES: creq.alg = CIPHER_ALG_AES; break; default: return -EINVAL; } switch (qcedev_areq->cipher_op_req.mode) { case QCEDEV_AES_MODE_CBC: case QCEDEV_DES_MODE_CBC: creq.mode = QCE_MODE_CBC; break; case QCEDEV_AES_MODE_ECB: case QCEDEV_DES_MODE_ECB: creq.mode = QCE_MODE_ECB; break; case QCEDEV_AES_MODE_CTR: creq.mode = QCE_MODE_CTR; break; case QCEDEV_AES_MODE_XTS: creq.mode = QCE_MODE_XTS; break; default: return -EINVAL; } if ((creq.alg == CIPHER_ALG_AES) && (creq.mode == QCE_MODE_CTR)) { creq.dir = QCE_ENCRYPT; } else { if (qcedev_areq->cipher_op_req.op == QCEDEV_OPER_ENC) creq.dir = QCE_ENCRYPT; else creq.dir = QCE_DECRYPT; } creq.iv = &qcedev_areq->cipher_op_req.iv[0]; creq.ivsize = qcedev_areq->cipher_op_req.ivlen; creq.iv_ctr_size = 0; creq.enckey = &qcedev_areq->cipher_op_req.enckey[0]; creq.encklen = qcedev_areq->cipher_op_req.encklen; creq.cryptlen = qcedev_areq->cipher_op_req.data_len; if (qcedev_areq->cipher_op_req.encklen == 0) { if ((qcedev_areq->cipher_op_req.op == QCEDEV_OPER_ENC_NO_KEY) || (qcedev_areq->cipher_op_req.op == QCEDEV_OPER_DEC_NO_KEY)) creq.op = QCE_REQ_ABLK_CIPHER_NO_KEY; else { int i; for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) { if (qcedev_areq->cipher_op_req.enckey[i] != 0) break; } if ((podev->platform_support.hw_key_support == 1) && (i == QCEDEV_MAX_KEY_SIZE)) creq.op = QCE_REQ_ABLK_CIPHER; else { ret = -EINVAL; goto unsupported; } } } else { creq.op = QCE_REQ_ABLK_CIPHER; } creq.qce_cb = qcedev_cipher_req_cb; creq.areq = (void *)&qcedev_areq->cipher_req; creq.flags = 0; creq.offload_op = QCE_OFFLOAD_NONE; ret = qce_ablk_cipher_req(podev->qce, &creq); *current_req_info = creq.current_req_info; unsupported: qcedev_areq->err = ret ? -ENXIO : 0; return ret; }; void qcedev_offload_cipher_req_cb(void *cookie, unsigned char *icv, unsigned char *iv, int ret) { struct qcedev_cipher_req *areq; struct qcedev_handle *handle; struct qcedev_control *podev; struct qcedev_async_req *qcedev_areq; areq = (struct qcedev_cipher_req *) cookie; if (!areq || !areq->cookie) return; handle = (struct qcedev_handle *) areq->cookie; podev = handle->cntl; if (!podev) return; qcedev_areq = podev->active_command; if (iv && qcedev_areq) memcpy(&qcedev_areq->offload_cipher_op_req.iv[0], iv, qcedev_areq->offload_cipher_op_req.ivlen); tasklet_schedule(&podev->done_tasklet); } static int start_offload_cipher_req(struct qcedev_control *podev, int *current_req_info) { struct qcedev_async_req *qcedev_areq; struct qce_req creq; u8 patt_sz = 0, proc_data_sz = 0; int ret = 0; memset(&creq, 0, sizeof(creq)); /* Start the command on the podev->active_command */ qcedev_areq = podev->active_command; qcedev_areq->cipher_req.cookie = qcedev_areq->handle; switch (qcedev_areq->offload_cipher_op_req.alg) { case QCEDEV_ALG_AES: creq.alg = CIPHER_ALG_AES; break; default: return -EINVAL; } switch (qcedev_areq->offload_cipher_op_req.mode) { case QCEDEV_AES_MODE_CBC: creq.mode = QCE_MODE_CBC; break; case QCEDEV_AES_MODE_CTR: creq.mode = QCE_MODE_CTR; break; default: return -EINVAL; } if (qcedev_areq->offload_cipher_op_req.is_copy_op || qcedev_areq->offload_cipher_op_req.encrypt) { creq.dir = QCE_ENCRYPT; } else { switch(qcedev_areq->offload_cipher_op_req.op) { case QCEDEV_OFFLOAD_HLOS_HLOS: case QCEDEV_OFFLOAD_HLOS_HLOS_1: case QCEDEV_OFFLOAD_HLOS_CPB: case QCEDEV_OFFLOAD_HLOS_CPB_1: creq.dir = QCE_DECRYPT; break; case QCEDEV_OFFLOAD_CPB_HLOS: creq.dir = QCE_ENCRYPT; break; default: return -EINVAL; } } creq.iv = &qcedev_areq->offload_cipher_op_req.iv[0]; creq.ivsize = qcedev_areq->offload_cipher_op_req.ivlen; creq.iv_ctr_size = qcedev_areq->offload_cipher_op_req.iv_ctr_size; creq.encklen = qcedev_areq->offload_cipher_op_req.encklen; /* OFFLOAD use cases use PIPE keys so no need to set keys */ creq.flags = QCEDEV_CTX_USE_PIPE_KEY; creq.op = QCE_REQ_ABLK_CIPHER_NO_KEY; creq.offload_op = (int)qcedev_areq->offload_cipher_op_req.op; if (qcedev_areq->offload_cipher_op_req.is_copy_op) creq.is_copy_op = true; creq.cryptlen = qcedev_areq->offload_cipher_op_req.data_len; creq.qce_cb = qcedev_offload_cipher_req_cb; creq.areq = (void *)&qcedev_areq->cipher_req; patt_sz = qcedev_areq->offload_cipher_op_req.pattern_info.patt_sz; proc_data_sz = qcedev_areq->offload_cipher_op_req.pattern_info.proc_data_sz; creq.is_pattern_valid = qcedev_areq->offload_cipher_op_req.is_pattern_valid; if (creq.is_pattern_valid) { creq.pattern_info = 0x1; if (patt_sz) creq.pattern_info |= (patt_sz - 1) << 4; if (proc_data_sz) creq.pattern_info |= (proc_data_sz - 1) << 8; creq.pattern_info |= qcedev_areq->offload_cipher_op_req.pattern_info.patt_offset << 12; } creq.block_offset = qcedev_areq->offload_cipher_op_req.block_offset; ret = qce_ablk_cipher_req(podev->qce, &creq); *current_req_info = creq.current_req_info; qcedev_areq->err = ret ? -ENXIO : 0; return ret; } static int start_sha_req(struct qcedev_control *podev, int *current_req_info) { struct qcedev_async_req *qcedev_areq; struct qce_sha_req sreq; int ret = 0; struct qcedev_handle *handle; /* start the command on the podev->active_command */ qcedev_areq = podev->active_command; handle = qcedev_areq->handle; switch (qcedev_areq->sha_op_req.alg) { case QCEDEV_ALG_SHA1: sreq.alg = QCE_HASH_SHA1; break; case QCEDEV_ALG_SHA256: sreq.alg = QCE_HASH_SHA256; break; case QCEDEV_ALG_SHA1_HMAC: if (podev->ce_support.sha_hmac) { sreq.alg = QCE_HASH_SHA1_HMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE; } else { sreq.alg = QCE_HASH_SHA1; sreq.authkey = NULL; } break; case QCEDEV_ALG_SHA256_HMAC: if (podev->ce_support.sha_hmac) { sreq.alg = QCE_HASH_SHA256_HMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE; } else { sreq.alg = QCE_HASH_SHA256; sreq.authkey = NULL; } break; case QCEDEV_ALG_AES_CMAC: sreq.alg = QCE_HASH_AES_CMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = qcedev_areq->sha_op_req.authklen; break; default: pr_err("Algorithm %d not supported, exiting\n", qcedev_areq->sha_op_req.alg); return -EINVAL; } qcedev_areq->sha_req.cookie = handle; sreq.qce_cb = qcedev_sha_req_cb; if (qcedev_areq->sha_op_req.alg != QCEDEV_ALG_AES_CMAC) { sreq.auth_data[0] = handle->sha_ctxt.auth_data[0]; sreq.auth_data[1] = handle->sha_ctxt.auth_data[1]; sreq.auth_data[2] = handle->sha_ctxt.auth_data[2]; sreq.auth_data[3] = handle->sha_ctxt.auth_data[3]; sreq.digest = &handle->sha_ctxt.digest[0]; sreq.first_blk = handle->sha_ctxt.first_blk; sreq.last_blk = handle->sha_ctxt.last_blk; } sreq.size = qcedev_areq->sha_req.sreq.nbytes; sreq.src = qcedev_areq->sha_req.sreq.src; sreq.areq = (void *)&qcedev_areq->sha_req; sreq.flags = 0; ret = qce_process_sha_req(podev->qce, &sreq); *current_req_info = sreq.current_req_info; qcedev_areq->err = ret ? -ENXIO : 0; return ret; }; static void qcedev_check_crypto_status( struct qcedev_async_req *qcedev_areq, void *handle) { struct qce_error error = {0}; qcedev_areq->offload_cipher_op_req.err = QCEDEV_OFFLOAD_NO_ERROR; qce_get_crypto_status(handle, &error); if (error.timer_error) { qcedev_areq->offload_cipher_op_req.err = QCEDEV_OFFLOAD_KEY_TIMER_EXPIRED_ERROR; } else if (error.key_paused) { qcedev_areq->offload_cipher_op_req.err = QCEDEV_OFFLOAD_KEY_PAUSE_ERROR; } else if (error.generic_error) { qcedev_areq->offload_cipher_op_req.err = QCEDEV_OFFLOAD_GENERIC_ERROR; } return; } #define MAX_RETRIES 333 static int submit_req(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { struct qcedev_control *podev; unsigned long flags = 0; int ret = 0; struct qcedev_stat *pstat; int current_req_info = 0; int wait = MAX_CRYPTO_WAIT_TIME; struct qcedev_async_req *new_req = NULL; int retries = 0; int req_wait = MAX_REQUEST_TIME; unsigned int crypto_wait = 0; qcedev_areq->err = 0; podev = handle->cntl; init_waitqueue_head(&qcedev_areq->wait_q); spin_lock_irqsave(&podev->lock, flags); /* * Service only one crypto request at a time. * Any other new requests are queued in ready_commands and woken up * only when the active command has finished successfully or when the * request times out or when the command failed when setting up. */ do { if (podev->active_command == NULL) { podev->active_command = qcedev_areq; qcedev_areq->state = QCEDEV_REQ_SUBMITTED; switch (qcedev_areq->op_type) { case QCEDEV_CRYPTO_OPER_CIPHER: ret = start_cipher_req(podev, ¤t_req_info); crypto_wait = MAX_CRYPTO_WAIT_TIME; break; case QCEDEV_CRYPTO_OPER_OFFLOAD_CIPHER: ret = start_offload_cipher_req(podev, ¤t_req_info); crypto_wait = MAX_OFFLOAD_CRYPTO_WAIT_TIME; break; default: crypto_wait = MAX_CRYPTO_WAIT_TIME; ret = start_sha_req(podev, ¤t_req_info); break; } } else { list_add_tail(&qcedev_areq->list, &podev->ready_commands); qcedev_areq->state = QCEDEV_REQ_WAITING; req_wait = wait_event_interruptible_lock_irq_timeout( qcedev_areq->wait_q, (qcedev_areq->state == QCEDEV_REQ_CURRENT), podev->lock, msecs_to_jiffies(MAX_REQUEST_TIME)); if ((req_wait == 0) || (req_wait == -ERESTARTSYS)) { pr_err("%s: request timed out, req_wait = %d\n", __func__, req_wait); list_del(&qcedev_areq->list); podev->active_command = NULL; spin_unlock_irqrestore(&podev->lock, flags); return qcedev_areq->err; } } } while (qcedev_areq->state != QCEDEV_REQ_SUBMITTED); if (ret != 0) { podev->active_command = NULL; /* * Look through queued requests and wake up the corresponding * thread. */ if (!list_empty(&podev->ready_commands)) { new_req = container_of(podev->ready_commands.next, struct qcedev_async_req, list); list_del(&new_req->list); new_req->state = QCEDEV_REQ_CURRENT; wake_up_interruptible(&new_req->wait_q); } } spin_unlock_irqrestore(&podev->lock, flags); qcedev_areq->timed_out = false; if (ret == 0) wait = wait_for_completion_timeout(&qcedev_areq->complete, msecs_to_jiffies(crypto_wait)); if (!wait) { /* * This means wait timed out, and the callback routine was not * exercised. The callback sequence does some housekeeping which * would be missed here, hence having a call to qce here to do * that. */ pr_err("%s: wait timed out, req info = %d\n", __func__, current_req_info); spin_lock_irqsave(&podev->lock, flags); qcedev_areq->timed_out = true; spin_unlock_irqrestore(&podev->lock, flags); qcedev_check_crypto_status(qcedev_areq, podev->qce); if (qcedev_areq->offload_cipher_op_req.err == QCEDEV_OFFLOAD_NO_ERROR) { pr_err("%s: no error, wait for request to be done", __func__); while (qcedev_areq->state != QCEDEV_REQ_DONE && retries < MAX_RETRIES) { usleep_range(3000, 5000); retries++; pr_err("%s: waiting for req state to be done, retries = %d", __func__, retries); } return 0; } ret = qce_manage_timeout(podev->qce, current_req_info); if (ret) pr_err("%s: error during manage timeout", __func__); req_done((unsigned long) podev); if (qcedev_areq->offload_cipher_op_req.err != QCEDEV_OFFLOAD_NO_ERROR) return 0; } if (ret) qcedev_areq->err = -EIO; pstat = &_qcedev_stat; if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_CIPHER) { switch (qcedev_areq->cipher_op_req.op) { case QCEDEV_OPER_DEC: if (qcedev_areq->err) pstat->qcedev_dec_fail++; else pstat->qcedev_dec_success++; break; case QCEDEV_OPER_ENC: if (qcedev_areq->err) pstat->qcedev_enc_fail++; else pstat->qcedev_enc_success++; break; default: break; } } else if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_OFFLOAD_CIPHER) { //Do nothing } else { if (qcedev_areq->err) pstat->qcedev_sha_fail++; else pstat->qcedev_sha_success++; } return qcedev_areq->err; } static int qcedev_sha_init(struct qcedev_async_req *areq, struct qcedev_handle *handle) { struct qcedev_sha_ctxt *sha_ctxt = &handle->sha_ctxt; memset(sha_ctxt, 0, sizeof(struct qcedev_sha_ctxt)); sha_ctxt->first_blk = 1; if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC)) { memcpy(&sha_ctxt->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctxt->diglen = SHA1_DIGEST_SIZE; } else { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA256) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC)) { memcpy(&sha_ctxt->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctxt->diglen = SHA256_DIGEST_SIZE; } } sha_ctxt->init_done = true; return 0; } static int qcedev_sha_update_max_xfer(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; uint32_t total; uint8_t *user_src = NULL; uint8_t *k_src = NULL; uint8_t *k_buf_src = NULL; uint32_t buf_size = 0; uint8_t *k_align_src = NULL; uint32_t sha_pad_len = 0; uint32_t trailing_buf_len = 0; uint32_t t_buf = handle->sha_ctxt.trailing_buf_len; uint32_t sha_block_size; total = qcedev_areq->sha_op_req.data_len + t_buf; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1) sha_block_size = SHA1_BLOCK_SIZE; else sha_block_size = SHA256_BLOCK_SIZE; if (total <= sha_block_size) { uint32_t len = qcedev_areq->sha_op_req.data_len; i = 0; k_src = &handle->sha_ctxt.trailing_buf[t_buf]; /* Copy data from user src(s) */ while (len > 0) { user_src = qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) return -EFAULT; len -= qcedev_areq->sha_op_req.data[i].len; k_src += qcedev_areq->sha_op_req.data[i].len; i++; } handle->sha_ctxt.trailing_buf_len = total; return 0; } buf_size = total + CACHE_LINE_SIZE * 2; k_buf_src = kmalloc(buf_size, GFP_KERNEL); if (k_buf_src == NULL) return -ENOMEM; k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src), CACHE_LINE_SIZE); k_src = k_align_src; /* check for trailing buffer from previous updates and append it */ if (t_buf > 0) { memcpy(k_src, &handle->sha_ctxt.trailing_buf[0], t_buf); k_src += t_buf; } /* Copy data from user src(s) */ user_src = qcedev_areq->sha_op_req.data[0].vaddr; if (user_src && copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[0].len)) { memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[0].len; for (i = 1; i < qcedev_areq->sha_op_req.entries; i++) { user_src = qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) { memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[i].len; } /* get new trailing buffer */ sha_pad_len = ALIGN(total, CE_SHA_BLOCK_SIZE) - total; trailing_buf_len = CE_SHA_BLOCK_SIZE - sha_pad_len; qcedev_areq->sha_req.sreq.src = sg_src; sg_init_one(qcedev_areq->sha_req.sreq.src, k_align_src, total-trailing_buf_len); qcedev_areq->sha_req.sreq.nbytes = total - trailing_buf_len; /* update sha_ctxt trailing buf content to new trailing buf */ if (trailing_buf_len > 0) { memset(&handle->sha_ctxt.trailing_buf[0], 0, 64); memcpy(&handle->sha_ctxt.trailing_buf[0], (k_src - trailing_buf_len), trailing_buf_len); } handle->sha_ctxt.trailing_buf_len = trailing_buf_len; err = submit_req(qcedev_areq, handle); handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.first_blk = 0; memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return err; } static int qcedev_sha_update(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; int j = 0; int k = 0; int num_entries = 0; uint32_t total = 0; if (!handle->sha_ctxt.init_done) { pr_err("%s Init was not called\n", __func__); return -EINVAL; } if (qcedev_areq->sha_op_req.data_len > QCE_MAX_OPER_DATA) { struct qcedev_sha_op_req *saved_req; struct qcedev_sha_op_req req; struct qcedev_sha_op_req *sreq = &qcedev_areq->sha_op_req; uint32_t req_size = 0; req_size = sizeof(struct qcedev_sha_op_req); /* save the original req structure */ saved_req = kmalloc(req_size, GFP_KERNEL); if (saved_req == NULL) { pr_err("%s:Can't Allocate mem:saved_req 0x%lx\n", __func__, (uintptr_t)saved_req); return -ENOMEM; } memcpy(&req, sreq, sizeof(*sreq)); memcpy(saved_req, sreq, sizeof(*sreq)); i = 0; /* Address 32 KB at a time */ while ((i < req.entries) && (err == 0)) { if (sreq->data[i].len > QCE_MAX_OPER_DATA) { sreq->data[0].len = QCE_MAX_OPER_DATA; if (i > 0) { sreq->data[0].vaddr = sreq->data[i].vaddr; } sreq->data_len = QCE_MAX_OPER_DATA; sreq->entries = 1; err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); sreq->data[i].len = req.data[i].len - QCE_MAX_OPER_DATA; sreq->data[i].vaddr = req.data[i].vaddr + QCE_MAX_OPER_DATA; req.data[i].vaddr = sreq->data[i].vaddr; req.data[i].len = sreq->data[i].len; } else { total = 0; for (j = i; j < req.entries; j++) { num_entries++; if ((total + sreq->data[j].len) >= QCE_MAX_OPER_DATA) { sreq->data[j].len = (QCE_MAX_OPER_DATA - total); total = QCE_MAX_OPER_DATA; break; } total += sreq->data[j].len; } sreq->data_len = total; if (i > 0) for (k = 0; k < num_entries; k++) { sreq->data[k].len = sreq->data[i+k].len; sreq->data[k].vaddr = sreq->data[i+k].vaddr; } sreq->entries = num_entries; i = j; err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); num_entries = 0; sreq->data[i].vaddr = req.data[i].vaddr + sreq->data[i].len; sreq->data[i].len = req.data[i].len - sreq->data[i].len; req.data[i].vaddr = sreq->data[i].vaddr; req.data[i].len = sreq->data[i].len; if (sreq->data[i].len == 0) i++; } } /* end of while ((i < req.entries) && (err == 0)) */ /* Restore the original req structure */ for (i = 0; i < saved_req->entries; i++) { sreq->data[i].len = saved_req->data[i].len; sreq->data[i].vaddr = saved_req->data[i].vaddr; } sreq->entries = saved_req->entries; sreq->data_len = saved_req->data_len; memset(saved_req, 0, req_size); kfree(saved_req); } else err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); return err; } static int qcedev_sha_final(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { int err = 0; struct scatterlist sg_src; uint32_t total; uint8_t *k_buf_src = NULL; uint32_t buf_size = 0; uint8_t *k_align_src = NULL; if (!handle->sha_ctxt.init_done) { pr_err("%s Init was not called\n", __func__); return -EINVAL; } handle->sha_ctxt.last_blk = 1; total = handle->sha_ctxt.trailing_buf_len; buf_size = total + CACHE_LINE_SIZE * 2; k_buf_src = kmalloc(buf_size, GFP_KERNEL); if (k_buf_src == NULL) return -ENOMEM; k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src), CACHE_LINE_SIZE); memcpy(k_align_src, &handle->sha_ctxt.trailing_buf[0], total); qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src; sg_init_one(qcedev_areq->sha_req.sreq.src, k_align_src, total); qcedev_areq->sha_req.sreq.nbytes = total; err = submit_req(qcedev_areq, handle); handle->sha_ctxt.first_blk = 0; handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.auth_data[0] = 0; handle->sha_ctxt.auth_data[1] = 0; handle->sha_ctxt.trailing_buf_len = 0; handle->sha_ctxt.init_done = false; memset(&handle->sha_ctxt.trailing_buf[0], 0, 64); memset(k_buf_src, 0, buf_size); kfree(k_buf_src); qcedev_areq->sha_req.sreq.src = NULL; return err; } static int qcedev_hash_cmac(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; uint32_t total; uint8_t *user_src = NULL; uint8_t *k_src = NULL; uint8_t *k_buf_src = NULL; uint32_t buf_size = 0; total = qcedev_areq->sha_op_req.data_len; if ((qcedev_areq->sha_op_req.authklen != QCEDEV_AES_KEY_128) && (qcedev_areq->sha_op_req.authklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key length\n", __func__); return -EINVAL; } if (copy_from_user(&handle->sha_ctxt.authkey[0], (void __user *)qcedev_areq->sha_op_req.authkey, qcedev_areq->sha_op_req.authklen)) return -EFAULT; if (total > U32_MAX - CACHE_LINE_SIZE * 2) return -EINVAL; buf_size = total + CACHE_LINE_SIZE * 2; k_buf_src = kmalloc(buf_size, GFP_KERNEL); if (k_buf_src == NULL) return -ENOMEM; k_src = k_buf_src; /* Copy data from user src(s) */ user_src = qcedev_areq->sha_op_req.data[0].vaddr; for (i = 0; i < qcedev_areq->sha_op_req.entries; i++) { user_src = qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) { memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[i].len; } qcedev_areq->sha_req.sreq.src = sg_src; sg_init_one(qcedev_areq->sha_req.sreq.src, k_buf_src, total); qcedev_areq->sha_req.sreq.nbytes = total; handle->sha_ctxt.diglen = qcedev_areq->sha_op_req.diglen; err = submit_req(qcedev_areq, handle); memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return err; } static int qcedev_set_hmac_auth_key(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; if (areq->sha_op_req.authklen <= QCEDEV_MAX_KEY_SIZE) { qcedev_sha_init(areq, handle); if (copy_from_user(&handle->sha_ctxt.authkey[0], (void __user *)areq->sha_op_req.authkey, areq->sha_op_req.authklen)) return -EFAULT; } else { struct qcedev_async_req authkey_areq; uint8_t authkey[QCEDEV_MAX_SHA_BLOCK_SIZE]; init_completion(&authkey_areq.complete); authkey_areq.sha_op_req.entries = 1; authkey_areq.sha_op_req.data[0].vaddr = areq->sha_op_req.authkey; authkey_areq.sha_op_req.data[0].len = areq->sha_op_req.authklen; authkey_areq.sha_op_req.data_len = areq->sha_op_req.authklen; authkey_areq.sha_op_req.diglen = 0; authkey_areq.handle = handle; memset(&authkey_areq.sha_op_req.digest[0], 0, QCEDEV_MAX_SHA_DIGEST); if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA1; if (areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA256; authkey_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; qcedev_sha_init(&authkey_areq, handle); err = qcedev_sha_update(&authkey_areq, handle, sg_src); if (!err) err = qcedev_sha_final(&authkey_areq, handle); else return err; memcpy(&authkey[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); qcedev_sha_init(areq, handle); memcpy(&handle->sha_ctxt.authkey[0], &authkey[0], handle->sha_ctxt.diglen); } return err; } static int qcedev_hmac_get_ohash(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { int err = 0; struct scatterlist sg_src; uint8_t *k_src = NULL; uint32_t sha_block_size = 0; uint32_t sha_digest_size = 0; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) { sha_digest_size = SHA1_DIGEST_SIZE; sha_block_size = SHA1_BLOCK_SIZE; } else { if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) { sha_digest_size = SHA256_DIGEST_SIZE; sha_block_size = SHA256_BLOCK_SIZE; } } k_src = kmalloc(sha_block_size, GFP_KERNEL); if (k_src == NULL) return -ENOMEM; /* check for trailing buffer from previous updates and append it */ memcpy(k_src, &handle->sha_ctxt.trailing_buf[0], handle->sha_ctxt.trailing_buf_len); qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src; sg_init_one(qcedev_areq->sha_req.sreq.src, k_src, sha_block_size); qcedev_areq->sha_req.sreq.nbytes = sha_block_size; memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size); memcpy(&handle->sha_ctxt.trailing_buf[0], &handle->sha_ctxt.digest[0], sha_digest_size); handle->sha_ctxt.trailing_buf_len = sha_digest_size; handle->sha_ctxt.first_blk = 1; handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.auth_data[0] = 0; handle->sha_ctxt.auth_data[1] = 0; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) { memcpy(&handle->sha_ctxt.digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); handle->sha_ctxt.diglen = SHA1_DIGEST_SIZE; } if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) { memcpy(&handle->sha_ctxt.digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); handle->sha_ctxt.diglen = SHA256_DIGEST_SIZE; } err = submit_req(qcedev_areq, handle); handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.first_blk = 0; memset(k_src, 0, sha_block_size); kfree(k_src); qcedev_areq->sha_req.sreq.src = NULL; return err; } static int qcedev_hmac_update_iokey(struct qcedev_async_req *areq, struct qcedev_handle *handle, bool ikey) { int i; uint32_t constant; uint32_t sha_block_size; if (ikey) constant = 0x36; else constant = 0x5c; if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) sha_block_size = SHA1_BLOCK_SIZE; else sha_block_size = SHA256_BLOCK_SIZE; memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size); for (i = 0; i < sha_block_size; i++) handle->sha_ctxt.trailing_buf[i] = (handle->sha_ctxt.authkey[i] ^ constant); handle->sha_ctxt.trailing_buf_len = sha_block_size; return 0; } static int qcedev_hmac_init(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err; struct qcedev_control *podev = handle->cntl; err = qcedev_set_hmac_auth_key(areq, handle, sg_src); if (err) return err; if (!podev->ce_support.sha_hmac) qcedev_hmac_update_iokey(areq, handle, true); return 0; } static int qcedev_hmac_final(struct qcedev_async_req *areq, struct qcedev_handle *handle) { int err; struct qcedev_control *podev = handle->cntl; err = qcedev_sha_final(areq, handle); if (podev->ce_support.sha_hmac) return err; qcedev_hmac_update_iokey(areq, handle, false); err = qcedev_hmac_get_ohash(areq, handle); if (err) return err; err = qcedev_sha_final(areq, handle); return err; } static int qcedev_hash_init(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256)) return qcedev_sha_init(areq, handle); else return qcedev_hmac_init(areq, handle, sg_src); } static int qcedev_hash_update(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { return qcedev_sha_update(qcedev_areq, handle, sg_src); } static int qcedev_hash_final(struct qcedev_async_req *areq, struct qcedev_handle *handle) { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256)) return qcedev_sha_final(areq, handle); else return qcedev_hmac_final(areq, handle); } static int qcedev_vbuf_ablk_cipher_max_xfer(struct qcedev_async_req *areq, int *di, struct qcedev_handle *handle, uint8_t *k_align_src) { int err = 0; int i = 0; int dst_i = *di; struct scatterlist sg_src; uint32_t byteoffset = 0; uint8_t *user_src = NULL; uint8_t *k_align_dst = k_align_src; struct qcedev_cipher_op_req *creq = &areq->cipher_op_req; if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR) byteoffset = areq->cipher_op_req.byteoffset; user_src = areq->cipher_op_req.vbuf.src[0].vaddr; if (user_src && copy_from_user((k_align_src + byteoffset), (void __user *)user_src, areq->cipher_op_req.vbuf.src[0].len)) return -EFAULT; k_align_src += byteoffset + areq->cipher_op_req.vbuf.src[0].len; for (i = 1; i < areq->cipher_op_req.entries; i++) { user_src = areq->cipher_op_req.vbuf.src[i].vaddr; if (user_src && copy_from_user(k_align_src, (void __user *)user_src, areq->cipher_op_req.vbuf.src[i].len)) { return -EFAULT; } k_align_src += areq->cipher_op_req.vbuf.src[i].len; } /* restore src beginning */ k_align_src = k_align_dst; areq->cipher_op_req.data_len += byteoffset; areq->cipher_req.creq.src = (struct scatterlist *) &sg_src; areq->cipher_req.creq.dst = (struct scatterlist *) &sg_src; /* In place encryption/decryption */ sg_init_one(areq->cipher_req.creq.src, k_align_dst, areq->cipher_op_req.data_len); areq->cipher_req.creq.cryptlen = areq->cipher_op_req.data_len; areq->cipher_req.creq.iv = areq->cipher_op_req.iv; areq->cipher_op_req.entries = 1; err = submit_req(areq, handle); /* copy data to destination buffer*/ creq->data_len -= byteoffset; while (creq->data_len > 0) { if (creq->vbuf.dst[dst_i].len <= creq->data_len) { if (err == 0 && copy_to_user( (void __user *)creq->vbuf.dst[dst_i].vaddr, (k_align_dst + byteoffset), creq->vbuf.dst[dst_i].len)) { err = -EFAULT; goto exit; } k_align_dst += creq->vbuf.dst[dst_i].len; creq->data_len -= creq->vbuf.dst[dst_i].len; dst_i++; } else { if (err == 0 && copy_to_user( (void __user *)creq->vbuf.dst[dst_i].vaddr, (k_align_dst + byteoffset), creq->data_len)) { err = -EFAULT; goto exit; } k_align_dst += creq->data_len; creq->vbuf.dst[dst_i].len -= creq->data_len; creq->vbuf.dst[dst_i].vaddr += creq->data_len; creq->data_len = 0; } } *di = dst_i; exit: areq->cipher_req.creq.src = NULL; areq->cipher_req.creq.dst = NULL; return err; }; static int qcedev_vbuf_ablk_cipher(struct qcedev_async_req *areq, struct qcedev_handle *handle) { int err = 0; int di = 0; int i = 0; int j = 0; int k = 0; uint32_t byteoffset = 0; int num_entries = 0; uint32_t total = 0; uint32_t len; uint8_t *k_buf_src = NULL; uint32_t buf_size = 0; uint8_t *k_align_src = NULL; uint32_t max_data_xfer; struct qcedev_cipher_op_req *saved_req; uint32_t req_size = 0; struct qcedev_cipher_op_req *creq = &areq->cipher_op_req; total = 0; if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR) byteoffset = areq->cipher_op_req.byteoffset; buf_size = QCE_MAX_OPER_DATA + CACHE_LINE_SIZE * 2; k_buf_src = kmalloc(buf_size, GFP_KERNEL); if (k_buf_src == NULL) return -ENOMEM; k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src), CACHE_LINE_SIZE); max_data_xfer = QCE_MAX_OPER_DATA - byteoffset; req_size = sizeof(struct qcedev_cipher_op_req); saved_req = kmemdup(creq, req_size, GFP_KERNEL); if (saved_req == NULL) { memset(k_buf_src, 0, buf_size); kfree(k_buf_src); return -ENOMEM; } if (areq->cipher_op_req.data_len > max_data_xfer) { struct qcedev_cipher_op_req req; /* save the original req structure */ memcpy(&req, creq, sizeof(struct qcedev_cipher_op_req)); i = 0; /* Address 32 KB at a time */ while ((i < req.entries) && (err == 0)) { if (creq->vbuf.src[i].len > max_data_xfer) { creq->vbuf.src[0].len = max_data_xfer; if (i > 0) { creq->vbuf.src[0].vaddr = creq->vbuf.src[i].vaddr; } creq->data_len = max_data_xfer; creq->entries = 1; err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); if (err < 0) { memset(saved_req, 0, req_size); memset(k_buf_src, 0, buf_size); kfree(k_buf_src); kfree(saved_req); return err; } creq->vbuf.src[i].len = req.vbuf.src[i].len - max_data_xfer; creq->vbuf.src[i].vaddr = req.vbuf.src[i].vaddr + max_data_xfer; req.vbuf.src[i].vaddr = creq->vbuf.src[i].vaddr; req.vbuf.src[i].len = creq->vbuf.src[i].len; } else { total = areq->cipher_op_req.byteoffset; for (j = i; j < req.entries; j++) { num_entries++; if ((total + creq->vbuf.src[j].len) >= max_data_xfer) { creq->vbuf.src[j].len = max_data_xfer - total; total = max_data_xfer; break; } total += creq->vbuf.src[j].len; } creq->data_len = total; if (i > 0) for (k = 0; k < num_entries; k++) { creq->vbuf.src[k].len = creq->vbuf.src[i+k].len; creq->vbuf.src[k].vaddr = creq->vbuf.src[i+k].vaddr; } creq->entries = num_entries; i = j; err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); if (err < 0) { memset(saved_req, 0, req_size); memset(k_buf_src, 0, buf_size); kfree(k_buf_src); kfree(saved_req); return err; } num_entries = 0; areq->cipher_op_req.byteoffset = 0; creq->vbuf.src[i].vaddr = req.vbuf.src[i].vaddr + creq->vbuf.src[i].len; creq->vbuf.src[i].len = req.vbuf.src[i].len - creq->vbuf.src[i].len; req.vbuf.src[i].vaddr = creq->vbuf.src[i].vaddr; req.vbuf.src[i].len = creq->vbuf.src[i].len; if (creq->vbuf.src[i].len == 0) i++; } areq->cipher_op_req.byteoffset = 0; max_data_xfer = QCE_MAX_OPER_DATA; byteoffset = 0; } /* end of while ((i < req.entries) && (err == 0)) */ } else err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); /* Restore the original req structure */ for (i = 0; i < saved_req->entries; i++) { creq->vbuf.src[i].len = saved_req->vbuf.src[i].len; creq->vbuf.src[i].vaddr = saved_req->vbuf.src[i].vaddr; } for (len = 0, i = 0; len < saved_req->data_len; i++) { creq->vbuf.dst[i].len = saved_req->vbuf.dst[i].len; creq->vbuf.dst[i].vaddr = saved_req->vbuf.dst[i].vaddr; len += saved_req->vbuf.dst[i].len; } creq->entries = saved_req->entries; creq->data_len = saved_req->data_len; creq->byteoffset = saved_req->byteoffset; memset(saved_req, 0, req_size); memset(k_buf_src, 0, buf_size); kfree(saved_req); kfree(k_buf_src); return err; } static int qcedev_smmu_ablk_offload_cipher(struct qcedev_async_req *areq, struct qcedev_handle *handle) { int i = 0; int err = 0; size_t byteoffset = 0; size_t transfer_data_len = 0; size_t pending_data_len = 0; size_t max_data_xfer = MAX_CEHW_REQ_TRANSFER_SIZE - byteoffset; uint8_t *user_src = NULL; uint8_t *user_dst = NULL; struct scatterlist sg_src; struct scatterlist sg_dst; if (areq->offload_cipher_op_req.mode == QCEDEV_AES_MODE_CTR) byteoffset = areq->offload_cipher_op_req.byteoffset; /* * areq has two components: * a) Request that comes from userspace i.e. offload_cipher_op_req * b) Request that QCE understands - skcipher i.e. cipher_req.creq * skcipher has sglist pointers src and dest that would carry * data to/from CE. */ areq->cipher_req.creq.src = &sg_src; areq->cipher_req.creq.dst = &sg_dst; sg_init_table(&sg_src, 1); sg_init_table(&sg_dst, 1); for (i = 0; i < areq->offload_cipher_op_req.entries; i++) { transfer_data_len = 0; pending_data_len = areq->offload_cipher_op_req.vbuf.src[i].len; user_src = areq->offload_cipher_op_req.vbuf.src[i].vaddr; user_src += byteoffset; user_dst = areq->offload_cipher_op_req.vbuf.dst[i].vaddr; user_dst += byteoffset; areq->cipher_req.creq.iv = areq->offload_cipher_op_req.iv; while (pending_data_len) { transfer_data_len = min(max_data_xfer, pending_data_len); sg_src.dma_address = (dma_addr_t)user_src; sg_dst.dma_address = (dma_addr_t)user_dst; areq->cipher_req.creq.cryptlen = transfer_data_len; sg_src.length = transfer_data_len; sg_dst.length = transfer_data_len; err = submit_req(areq, handle); if (err) { pr_err("%s: Error processing req, err = %d\n", __func__, err); goto exit; } /* update data len to be processed */ pending_data_len -= transfer_data_len; user_src += transfer_data_len; user_dst += transfer_data_len; } } exit: areq->cipher_req.creq.src = NULL; areq->cipher_req.creq.dst = NULL; return err; } static int qcedev_check_cipher_key(struct qcedev_cipher_op_req *req, struct qcedev_control *podev) { /* if intending to use HW key make sure key fields are set * correctly and HW key is indeed supported in target */ if (req->encklen == 0) { int i; for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) { if (req->enckey[i]) { pr_err("%s: Invalid key: non-zero key input\n", __func__); goto error; } } if ((req->op != QCEDEV_OPER_ENC_NO_KEY) && (req->op != QCEDEV_OPER_DEC_NO_KEY)) if (!podev->platform_support.hw_key_support) { pr_err("%s: Invalid op %d\n", __func__, (uint32_t)req->op); goto error; } } else { if (req->encklen == QCEDEV_AES_KEY_192) { if (!podev->ce_support.aes_key_192) { pr_err("%s: AES-192 not supported\n", __func__); goto error; } } else { /* if not using HW key make sure key * length is valid */ if (req->mode == QCEDEV_AES_MODE_XTS) { if ((req->encklen != QCEDEV_AES_KEY_128*2) && (req->encklen != QCEDEV_AES_KEY_256*2)) { pr_err("%s: unsupported key size: %d\n", __func__, req->encklen); goto error; } } else { if ((req->encklen != QCEDEV_AES_KEY_128) && (req->encklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key size %d\n", __func__, req->encklen); goto error; } } } } return 0; error: return -EINVAL; } static int qcedev_check_cipher_params(struct qcedev_cipher_op_req *req, struct qcedev_control *podev) { uint32_t total = 0; uint32_t i; if (req->use_pmem) { pr_err("%s: Use of PMEM is not supported\n", __func__); goto error; } if ((req->entries == 0) || (req->data_len == 0) || (req->entries > QCEDEV_MAX_BUFFERS)) { pr_err("%s: Invalid cipher length/entries\n", __func__); goto error; } if ((req->alg >= QCEDEV_ALG_LAST) || (req->mode >= QCEDEV_AES_DES_MODE_LAST)) { pr_err("%s: Invalid algorithm %d\n", __func__, (uint32_t)req->alg); goto error; } if ((req->mode == QCEDEV_AES_MODE_XTS) && (!podev->ce_support.aes_xts)) { pr_err("%s: XTS algorithm is not supported\n", __func__); goto error; } if (req->alg == QCEDEV_ALG_AES) { if (qcedev_check_cipher_key(req, podev)) goto error; } /* if using a byteoffset, make sure it is CTR mode using vbuf */ if (req->byteoffset) { if (req->mode != QCEDEV_AES_MODE_CTR) { pr_err("%s: Operation on byte offset not supported\n", __func__); goto error; } if (req->byteoffset >= AES_CE_BLOCK_SIZE) { pr_err("%s: Invalid byte offset\n", __func__); goto error; } total = req->byteoffset; for (i = 0; i < req->entries; i++) { if (total > U32_MAX - req->vbuf.src[i].len) { pr_err("%s:Integer overflow on total src len\n", __func__); goto error; } total += req->vbuf.src[i].len; } } if (req->data_len < req->byteoffset) { pr_err("%s: req data length %u is less than byteoffset %u\n", __func__, req->data_len, req->byteoffset); goto error; } /* Ensure IV size */ if (req->ivlen > QCEDEV_MAX_IV_SIZE) { pr_err("%s: ivlen is not correct: %u\n", __func__, req->ivlen); goto error; } /* Ensure Key size */ if (req->encklen > QCEDEV_MAX_KEY_SIZE) { pr_err("%s: Klen is not correct: %u\n", __func__, req->encklen); goto error; } /* Ensure zer ivlen for ECB mode */ if (req->ivlen > 0) { if ((req->mode == QCEDEV_AES_MODE_ECB) || (req->mode == QCEDEV_DES_MODE_ECB)) { pr_err("%s: Expecting a zero length IV\n", __func__); goto error; } } else { if ((req->mode != QCEDEV_AES_MODE_ECB) && (req->mode != QCEDEV_DES_MODE_ECB)) { pr_err("%s: Expecting a non-zero ength IV\n", __func__); goto error; } } /* Check for sum of all dst length is equal to data_len */ for (i = 0, total = 0; i < req->entries; i++) { if (!req->vbuf.dst[i].vaddr && req->vbuf.dst[i].len) { pr_err("%s: NULL req dst vbuf[%d] with length %d\n", __func__, i, req->vbuf.dst[i].len); goto error; } if (req->vbuf.dst[i].len >= U32_MAX - total) { pr_err("%s: Integer overflow on total req dst vbuf length\n", __func__); goto error; } total += req->vbuf.dst[i].len; } if (total != req->data_len) { pr_err("%s: Total (i=%d) dst(%d) buf size != data_len (%d)\n", __func__, i, total, req->data_len); goto error; } /* Check for sum of all src length is equal to data_len */ for (i = 0, total = 0; i < req->entries; i++) { if (!req->vbuf.src[i].vaddr && req->vbuf.src[i].len) { pr_err("%s: NULL req src vbuf[%d] with length %d\n", __func__, i, req->vbuf.src[i].len); goto error; } if (req->vbuf.src[i].len > U32_MAX - total) { pr_err("%s: Integer overflow on total req src vbuf length\n", __func__); goto error; } total += req->vbuf.src[i].len; } if (total != req->data_len) { pr_err("%s: Total src(%d) buf size != data_len (%d)\n", __func__, total, req->data_len); goto error; } return 0; error: return -EINVAL; } static int qcedev_check_sha_params(struct qcedev_sha_op_req *req, struct qcedev_control *podev) { uint32_t total = 0; uint32_t i; if ((req->alg == QCEDEV_ALG_AES_CMAC) && (!podev->ce_support.cmac)) { pr_err("%s: CMAC not supported\n", __func__); goto sha_error; } if ((!req->entries) || (req->entries > QCEDEV_MAX_BUFFERS)) { pr_err("%s: Invalid num entries (%d)\n", __func__, req->entries); goto sha_error; } if (req->alg >= QCEDEV_ALG_SHA_ALG_LAST) { pr_err("%s: Invalid algorithm (%d)\n", __func__, req->alg); goto sha_error; } if ((req->alg == QCEDEV_ALG_SHA1_HMAC) || (req->alg == QCEDEV_ALG_SHA256_HMAC)) { if (req->authkey == NULL) { pr_err("%s: Invalid authkey pointer\n", __func__); goto sha_error; } if (req->authklen <= 0) { pr_err("%s: Invalid authkey length (%d)\n", __func__, req->authklen); goto sha_error; } } if (req->alg == QCEDEV_ALG_AES_CMAC) { if ((req->authklen != QCEDEV_AES_KEY_128) && (req->authklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key length\n", __func__); goto sha_error; } } /* Check for sum of all src length is equal to data_len */ for (i = 0, total = 0; i < req->entries; i++) { if (req->data[i].len > U32_MAX - total) { pr_err("%s: Integer overflow on total req buf length\n", __func__); goto sha_error; } total += req->data[i].len; } if (total != req->data_len) { pr_err("%s: Total src(%d) buf size != data_len (%d)\n", __func__, total, req->data_len); goto sha_error; } return 0; sha_error: return -EINVAL; } static int qcedev_check_offload_cipher_key(struct qcedev_offload_cipher_op_req *req, struct qcedev_control *podev) { if (req->encklen == 0) return -EINVAL; /* AES-192 is not a valid option for OFFLOAD use case */ if ((req->encklen != QCEDEV_AES_KEY_128) && (req->encklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key size %d\n", __func__, req->encklen); goto error; } return 0; error: return -EINVAL; } static int qcedev_check_offload_cipher_params(struct qcedev_offload_cipher_op_req *req, struct qcedev_control *podev) { uint32_t total = 0; int i = 0; if ((req->entries == 0) || (req->data_len == 0) || (req->entries > QCEDEV_MAX_BUFFERS)) { pr_err("%s: Invalid cipher length/entries\n", __func__); goto error; } if ((req->alg != QCEDEV_ALG_AES) || (req->mode > QCEDEV_AES_MODE_CTR)) { pr_err("%s: Invalid algorithm %d\n", __func__, (uint32_t)req->alg); goto error; } if (qcedev_check_offload_cipher_key(req, podev)) goto error; if (req->block_offset >= AES_CE_BLOCK_SIZE) goto error; /* if using a byteoffset, make sure it is CTR mode using vbuf */ if (req->byteoffset) { if (req->mode != QCEDEV_AES_MODE_CTR) { pr_err("%s: Operation on byte offset not supported\n", __func__); goto error; } if (req->byteoffset >= AES_CE_BLOCK_SIZE) { pr_err("%s: Invalid byte offset\n", __func__); goto error; } total = req->byteoffset; for (i = 0; i < req->entries; i++) { if (total > U32_MAX - req->vbuf.src[i].len) { pr_err("%s:Int overflow on total src len\n", __func__); goto error; } total += req->vbuf.src[i].len; } } if (req->data_len < req->byteoffset) { pr_err("%s: req data length %u is less than byteoffset %u\n", __func__, req->data_len, req->byteoffset); goto error; } /* Ensure IV size */ if (req->ivlen > QCEDEV_MAX_IV_SIZE) { pr_err("%s: ivlen is not correct: %u\n", __func__, req->ivlen); goto error; } /* Ensure Key size */ if (req->encklen > QCEDEV_MAX_KEY_SIZE) { pr_err("%s: Klen is not correct: %u\n", __func__, req->encklen); goto error; } /* Check for sum of all dst length is equal to data_len */ for (i = 0, total = 0; i < req->entries; i++) { if (!req->vbuf.dst[i].vaddr && req->vbuf.dst[i].len) { pr_err("%s: NULL req dst vbuf[%d] with length %d\n", __func__, i, req->vbuf.dst[i].len); goto error; } if (req->vbuf.dst[i].len >= U32_MAX - total) { pr_err("%s: Int overflow on total req dst vbuf len\n", __func__); goto error; } total += req->vbuf.dst[i].len; } if (total != req->data_len) { pr_err("%s: Total (i=%d) dst(%d) buf size != data_len (%d)\n", __func__, i, total, req->data_len); goto error; } /* Check for sum of all src length is equal to data_len */ for (i = 0, total = 0; i < req->entries; i++) { if (!req->vbuf.src[i].vaddr && req->vbuf.src[i].len) { pr_err("%s: NULL req src vbuf[%d] with length %d\n", __func__, i, req->vbuf.src[i].len); goto error; } if (req->vbuf.src[i].len > U32_MAX - total) { pr_err("%s: Int overflow on total req src vbuf len\n", __func__); goto error; } total += req->vbuf.src[i].len; } if (total != req->data_len) { pr_err("%s: Total src(%d) buf size != data_len (%d)\n", __func__, total, req->data_len); goto error; } return 0; error: return -EINVAL; } long qcedev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int err = 0; struct qcedev_handle *handle; struct qcedev_control *podev; struct qcedev_async_req *qcedev_areq; struct qcedev_stat *pstat; qcedev_areq = kzalloc(sizeof(struct qcedev_async_req), GFP_KERNEL); if (!qcedev_areq) return -ENOMEM; handle = file->private_data; podev = handle->cntl; qcedev_areq->handle = handle; if (podev == NULL || podev->magic != QCEDEV_MAGIC) { pr_err("%s: invalid handle %pK\n", __func__, podev); err = -ENOENT; goto exit_free_qcedev_areq; } /* Verify user arguments. */ if (_IOC_TYPE(cmd) != QCEDEV_IOC_MAGIC) { err = -ENOTTY; goto exit_free_qcedev_areq; } init_completion(&qcedev_areq->complete); pstat = &_qcedev_stat; switch (cmd) { case QCEDEV_IOCTL_ENC_REQ: case QCEDEV_IOCTL_DEC_REQ: if (copy_from_user(&qcedev_areq->cipher_op_req, (void __user *)arg, sizeof(struct qcedev_cipher_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_CIPHER; if (qcedev_check_cipher_params(&qcedev_areq->cipher_op_req, podev)) { err = -EINVAL; goto exit_free_qcedev_areq; } err = qcedev_vbuf_ablk_cipher(qcedev_areq, handle); if (err) goto exit_free_qcedev_areq; if (copy_to_user((void __user *)arg, &qcedev_areq->cipher_op_req, sizeof(struct qcedev_cipher_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } break; case QCEDEV_IOCTL_OFFLOAD_OP_REQ: if (copy_from_user(&qcedev_areq->offload_cipher_op_req, (void __user *)arg, sizeof(struct qcedev_offload_cipher_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_OFFLOAD_CIPHER; if (qcedev_check_offload_cipher_params( &qcedev_areq->offload_cipher_op_req, podev)) { err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->offload_cipher_op_req.err = QCEDEV_OFFLOAD_NO_ERROR; err = qcedev_smmu_ablk_offload_cipher(qcedev_areq, handle); if (err) goto exit_free_qcedev_areq; if (copy_to_user((void __user *)arg, &qcedev_areq->offload_cipher_op_req, sizeof(struct qcedev_offload_cipher_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } break; case QCEDEV_IOCTL_SHA_INIT_REQ: { struct scatterlist sg_src; if (copy_from_user(&qcedev_areq->sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } mutex_lock(&hash_access_lock); if (qcedev_check_sha_params(&qcedev_areq->sha_op_req, podev)) { mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_SHA; err = qcedev_hash_init(qcedev_areq, handle, &sg_src); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } mutex_unlock(&hash_access_lock); if (copy_to_user((void __user *)arg, &qcedev_areq->sha_op_req, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } handle->sha_ctxt.init_done = true; } break; case QCEDEV_IOCTL_GET_CMAC_REQ: if (!podev->ce_support.cmac) { err = -ENOTTY; goto exit_free_qcedev_areq; } fallthrough; case QCEDEV_IOCTL_SHA_UPDATE_REQ: { struct scatterlist sg_src; if (copy_from_user(&qcedev_areq->sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } mutex_lock(&hash_access_lock); if (qcedev_check_sha_params(&qcedev_areq->sha_op_req, podev)) { mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_SHA; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_AES_CMAC) { err = qcedev_hash_cmac(qcedev_areq, handle, &sg_src); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } } else { if (!handle->sha_ctxt.init_done) { pr_err("%s Init was not called\n", __func__); mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } err = qcedev_hash_update(qcedev_areq, handle, &sg_src); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } } if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) { pr_err("Invalid sha_ctxt.diglen %d\n", handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } memcpy(&qcedev_areq->sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); if (copy_to_user((void __user *)arg, &qcedev_areq->sha_op_req, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } } break; case QCEDEV_IOCTL_SHA_FINAL_REQ: if (!handle->sha_ctxt.init_done) { pr_err("%s Init was not called\n", __func__); err = -EINVAL; goto exit_free_qcedev_areq; } if (copy_from_user(&qcedev_areq->sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } mutex_lock(&hash_access_lock); if (qcedev_check_sha_params(&qcedev_areq->sha_op_req, podev)) { mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_SHA; err = qcedev_hash_final(qcedev_areq, handle); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) { pr_err("Invalid sha_ctxt.diglen %d\n", handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->sha_op_req.diglen = handle->sha_ctxt.diglen; memcpy(&qcedev_areq->sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); if (copy_to_user((void __user *)arg, &qcedev_areq->sha_op_req, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } handle->sha_ctxt.init_done = false; break; case QCEDEV_IOCTL_GET_SHA_REQ: { struct scatterlist sg_src; if (copy_from_user(&qcedev_areq->sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } mutex_lock(&hash_access_lock); if (qcedev_check_sha_params(&qcedev_areq->sha_op_req, podev)) { mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->op_type = QCEDEV_CRYPTO_OPER_SHA; qcedev_hash_init(qcedev_areq, handle, &sg_src); err = qcedev_hash_update(qcedev_areq, handle, &sg_src); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } err = qcedev_hash_final(qcedev_areq, handle); if (err) { mutex_unlock(&hash_access_lock); goto exit_free_qcedev_areq; } if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) { pr_err("Invalid sha_ctxt.diglen %d\n", handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); err = -EINVAL; goto exit_free_qcedev_areq; } qcedev_areq->sha_op_req.diglen = handle->sha_ctxt.diglen; memcpy(&qcedev_areq->sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); mutex_unlock(&hash_access_lock); if (copy_to_user((void __user *)arg, &qcedev_areq->sha_op_req, sizeof(struct qcedev_sha_op_req))) { err = -EFAULT; goto exit_free_qcedev_areq; } } break; case QCEDEV_IOCTL_MAP_BUF_REQ: { unsigned long long vaddr = 0; struct qcedev_map_buf_req map_buf = { {0} }; int i = 0; if (copy_from_user(&map_buf, (void __user *)arg, sizeof(map_buf))) { err = -EFAULT; goto exit_free_qcedev_areq; } if (map_buf.num_fds > ARRAY_SIZE(map_buf.fd)) { pr_err("%s: err: num_fds = %d exceeds max value\n", __func__, map_buf.num_fds); err = -EINVAL; goto exit_free_qcedev_areq; } for (i = 0; i < map_buf.num_fds; i++) { err = qcedev_check_and_map_buffer(handle, map_buf.fd[i], map_buf.fd_offset[i], map_buf.fd_size[i], &vaddr); if (err) { pr_err( "%s: err: failed to map fd(%d) - %d\n", __func__, map_buf.fd[i], err); goto exit_free_qcedev_areq; } map_buf.buf_vaddr[i] = vaddr; pr_info("%s: info: vaddr = %llx\n, fd = %d", __func__, vaddr, map_buf.fd[i]); } if (copy_to_user((void __user *)arg, &map_buf, sizeof(map_buf))) { err = -EFAULT; goto exit_free_qcedev_areq; } break; } case QCEDEV_IOCTL_UNMAP_BUF_REQ: { struct qcedev_unmap_buf_req unmap_buf = { { 0 } }; int i = 0; if (copy_from_user(&unmap_buf, (void __user *)arg, sizeof(unmap_buf))) { err = -EFAULT; goto exit_free_qcedev_areq; } if (unmap_buf.num_fds > ARRAY_SIZE(unmap_buf.fd)) { pr_err("%s: err: num_fds = %d exceeds max value\n", __func__, unmap_buf.num_fds); err = -EINVAL; goto exit_free_qcedev_areq; } for (i = 0; i < unmap_buf.num_fds; i++) { err = qcedev_check_and_unmap_buffer(handle, unmap_buf.fd[i]); if (err) { pr_err( "%s: err: failed to unmap fd(%d) - %d\n", __func__, unmap_buf.fd[i], err); goto exit_free_qcedev_areq; } } break; } default: err = -ENOTTY; goto exit_free_qcedev_areq; } exit_free_qcedev_areq: kfree(qcedev_areq); return err; } static int qcedev_probe_device(struct platform_device *pdev) { void *handle = NULL; int rc = 0; struct qcedev_control *podev; struct msm_ce_hw_support *platform_support; podev = &qce_dev[0]; rc = alloc_chrdev_region(&qcedev_device_no, 0, 1, QCEDEV_DEV); if (rc < 0) { pr_err("alloc_chrdev_region failed %d\n", rc); return rc; } #if (KERNEL_VERSION(6, 3, 0) <= LINUX_VERSION_CODE) driver_class = class_create(QCEDEV_DEV); #else driver_class = class_create(THIS_MODULE, QCEDEV_DEV); #endif if (IS_ERR(driver_class)) { rc = -ENOMEM; pr_err("class_create failed %d\n", rc); goto exit_unreg_chrdev_region; } class_dev = device_create(driver_class, NULL, qcedev_device_no, NULL, QCEDEV_DEV); if (IS_ERR(class_dev)) { pr_err("class_device_create failed %d\n", rc); rc = -ENOMEM; goto exit_destroy_class; } cdev_init(&podev->cdev, &qcedev_fops); podev->cdev.owner = THIS_MODULE; rc = cdev_add(&podev->cdev, MKDEV(MAJOR(qcedev_device_no), 0), 1); if (rc < 0) { pr_err("cdev_add failed %d\n", rc); goto exit_destroy_device; } podev->minor = 0; podev->high_bw_req_count = 0; INIT_LIST_HEAD(&podev->ready_commands); podev->active_command = NULL; INIT_LIST_HEAD(&podev->context_banks); spin_lock_init(&podev->lock); tasklet_init(&podev->done_tasklet, req_done, (unsigned long)podev); podev->icc_path = of_icc_get(&pdev->dev, "data_path"); if (IS_ERR(podev->icc_path)) { rc = PTR_ERR(podev->icc_path); pr_err("%s Failed to get icc path with error %d\n", __func__, rc); goto exit_del_cdev; } /* * HLOS crypto vote values from DTSI. If no values specified, use * nominal values. */ if (of_property_read_u32((&pdev->dev)->of_node, "qcom,icc_avg_bw", &podev->icc_avg_bw)) { pr_warn("%s: No icc avg BW set, using default\n", __func__); podev->icc_avg_bw = CRYPTO_AVG_BW; } if (of_property_read_u32((&pdev->dev)->of_node, "qcom,icc_peak_bw", &podev->icc_peak_bw)) { pr_warn("%s: No icc peak BW set, using default\n", __func__); podev->icc_peak_bw = CRYPTO_PEAK_BW; } rc = icc_set_bw(podev->icc_path, podev->icc_avg_bw, podev->icc_peak_bw); if (rc) { pr_err("%s Unable to set high bandwidth\n", __func__); goto exit_unregister_bus_scale; } handle = qce_open(pdev, &rc); if (handle == NULL) { rc = -ENODEV; goto exit_scale_busbandwidth; } podev->qce = handle; rc = qce_set_irqs(podev->qce, false); if (rc) { pr_err("%s: could not disable bam irqs, ret = %d", __func__, rc); goto exit_scale_busbandwidth; } rc = icc_set_bw(podev->icc_path, 0, 0); if (rc) { pr_err("%s Unable to set to low bandwidth\n", __func__); goto exit_qce_close; } podev->pdev = pdev; platform_set_drvdata(pdev, podev); qce_hw_support(podev->qce, &podev->ce_support); if (podev->ce_support.bam) { podev->platform_support.ce_shared = 0; podev->platform_support.shared_ce_resource = 0; podev->platform_support.hw_key_support = podev->ce_support.hw_key; podev->platform_support.sha_hmac = 1; } else { platform_support = (struct msm_ce_hw_support *)pdev->dev.platform_data; podev->platform_support.ce_shared = platform_support->ce_shared; podev->platform_support.shared_ce_resource = platform_support->shared_ce_resource; podev->platform_support.hw_key_support = platform_support->hw_key_support; podev->platform_support.sha_hmac = platform_support->sha_hmac; } podev->mem_client = qcedev_mem_new_client(MEM_ION); if (!podev->mem_client) { pr_err("%s: err: qcedev_mem_new_client failed\n", __func__); goto exit_qce_close; } rc = of_platform_populate(pdev->dev.of_node, qcedev_match, NULL, &pdev->dev); if (rc) { pr_err("%s: err: of_platform_populate failed: %d\n", __func__, rc); goto exit_mem_new_client; } return 0; exit_mem_new_client: if (podev->mem_client) qcedev_mem_delete_client(podev->mem_client); podev->mem_client = NULL; exit_qce_close: if (handle) qce_close(handle); exit_scale_busbandwidth: icc_set_bw(podev->icc_path, 0, 0); exit_unregister_bus_scale: if (podev->icc_path) icc_put(podev->icc_path); exit_del_cdev: cdev_del(&podev->cdev); exit_destroy_device: device_destroy(driver_class, qcedev_device_no); exit_destroy_class: class_destroy(driver_class); exit_unreg_chrdev_region: unregister_chrdev_region(qcedev_device_no, 1); podev->icc_path = NULL; platform_set_drvdata(pdev, NULL); podev->pdev = NULL; podev->qce = NULL; return rc; } static int qcedev_probe(struct platform_device *pdev) { if (of_device_is_compatible(pdev->dev.of_node, "qcom,qcedev")) return qcedev_probe_device(pdev); else if (of_device_is_compatible(pdev->dev.of_node, "qcom,qcedev,context-bank")) return qcedev_parse_context_bank(pdev); return -EINVAL; }; static int qcedev_remove(struct platform_device *pdev) { struct qcedev_control *podev; podev = platform_get_drvdata(pdev); if (!podev) return 0; qcedev_ce_high_bw_req(podev, true); if (podev->qce) qce_close(podev->qce); qcedev_ce_high_bw_req(podev, false); if (podev->icc_path) icc_put(podev->icc_path); tasklet_kill(&podev->done_tasklet); cdev_del(&podev->cdev); device_destroy(driver_class, qcedev_device_no); class_destroy(driver_class); unregister_chrdev_region(qcedev_device_no, 1); return 0; }; static int qcedev_suspend(struct platform_device *pdev, pm_message_t state) { struct qcedev_control *podev; int ret; podev = platform_get_drvdata(pdev); if (!podev) return 0; mutex_lock(&qcedev_sent_bw_req); if (podev->high_bw_req_count) { ret = qce_set_irqs(podev->qce, false); if (ret) { pr_err("%s: could not disable bam irqs, ret = %d", __func__, ret); goto suspend_exit; } ret = qcedev_control_clocks(podev, false); if (ret) goto suspend_exit; } suspend_exit: mutex_unlock(&qcedev_sent_bw_req); return 0; } static int qcedev_resume(struct platform_device *pdev) { struct qcedev_control *podev; int ret; podev = platform_get_drvdata(pdev); if (!podev) return 0; mutex_lock(&qcedev_sent_bw_req); if (podev->high_bw_req_count) { ret = qcedev_control_clocks(podev, true); if (ret) goto resume_exit; ret = qce_set_irqs(podev->qce, true); if (ret) { pr_err("%s: could not enable bam irqs, ret = %d", __func__, ret); qcedev_control_clocks(podev, false); } } resume_exit: mutex_unlock(&qcedev_sent_bw_req); return 0; } static struct platform_driver qcedev_plat_driver = { .probe = qcedev_probe, .remove = qcedev_remove, .suspend = qcedev_suspend, .resume = qcedev_resume, .driver = { .name = "qce", .of_match_table = qcedev_match, }, }; static int _disp_stats(int id) { struct qcedev_stat *pstat; int len = 0; pstat = &_qcedev_stat; len = scnprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1, "\nQTI QCE dev driver %d Statistics:\n", id + 1); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation success : %d\n", pstat->qcedev_enc_success); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation fail : %d\n", pstat->qcedev_enc_fail); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Decryption operation success : %d\n", pstat->qcedev_dec_success); len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation fail : %d\n", pstat->qcedev_dec_fail); return len; } static ssize_t _debug_stats_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { ssize_t rc = -EINVAL; int qcedev = *((int *) file->private_data); int len; len = _disp_stats(qcedev); if (len <= count) rc = simple_read_from_buffer((void __user *) buf, len, ppos, (void *) _debug_read_buf, len); return rc; } static ssize_t _debug_stats_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { memset((char *)&_qcedev_stat, 0, sizeof(struct qcedev_stat)); return count; }; static const struct file_operations _debug_stats_ops = { .open = simple_open, .read = _debug_stats_read, .write = _debug_stats_write, }; static int _qcedev_debug_init(void) { int rc; char name[DEBUG_MAX_FNAME]; struct dentry *dent; _debug_dent = debugfs_create_dir("qcedev", NULL); if (IS_ERR(_debug_dent)) { pr_debug("qcedev debugfs_create_dir fail, error %ld\n", PTR_ERR(_debug_dent)); return PTR_ERR(_debug_dent); } snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1); _debug_qcedev = 0; dent = debugfs_create_file(name, 0644, _debug_dent, &_debug_qcedev, &_debug_stats_ops); if (dent == NULL) { pr_debug("qcedev debugfs_create_file fail, error %ld\n", PTR_ERR(dent)); rc = PTR_ERR(dent); goto err; } return 0; err: debugfs_remove_recursive(_debug_dent); return rc; } static int qcedev_init(void) { _qcedev_debug_init(); return platform_driver_register(&qcedev_plat_driver); } static void qcedev_exit(void) { debugfs_remove_recursive(_debug_dent); platform_driver_unregister(&qcedev_plat_driver); } MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("QTI DEV Crypto driver"); MODULE_IMPORT_NS(DMA_BUF); module_init(qcedev_init); module_exit(qcedev_exit);