// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aqt1000.h" #include "aqt1000-api.h" #include "aqt1000-mbhc.h" #include "aqt1000-registers.h" #include "aqt1000-irq.h" #include "pdata.h" #include #include #define AQT_ZDET_SUPPORTED true /* Z value defined in milliohm */ #define AQT_ZDET_VAL_32 32000 #define AQT_ZDET_VAL_400 400000 #define AQT_ZDET_VAL_1200 1200000 #define AQT_ZDET_VAL_100K 100000000 /* Z floating defined in ohms */ #define AQT_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE #define AQT_ZDET_NUM_MEASUREMENTS 900 #define AQT_MBHC_GET_C1(c) ((c & 0xC000) >> 14) #define AQT_MBHC_GET_X1(x) (x & 0x3FFF) /* Z value compared in milliOhm */ #define AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z) ((z > 400000) || (z < 32000)) #define AQT_MBHC_ZDET_CONST (86 * 16384) #define AQT_MBHC_MOISTURE_RREF R_24_KOHM static struct wcd_mbhc_register wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = { WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN", AQT1000_ANA_MBHC_MECH, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN", AQT1000_ANA_MBHC_MECH, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE", AQT1000_ANA_MBHC_MECH, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL", AQT1000_MBHC_NEW_PLUG_DETECT_CTL, 0x30, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE", AQT1000_ANA_MBHC_ELECT, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL", AQT1000_MBHC_NEW_INT_MECH_DET_CURRENT, 0x1F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL", AQT1000_ANA_MBHC_MECH, 0x04, 2, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE", AQT1000_ANA_MBHC_MECH, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE", AQT1000_ANA_MBHC_MECH, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND", AQT1000_ANA_MBHC_MECH, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC", AQT1000_ANA_MBHC_ELECT, 0x06, 1, 0), WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN", AQT1000_ANA_MBHC_ELECT, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC", AQT1000_MBHC_NEW_PLUG_DETECT_CTL, 0x0F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC", AQT1000_MBHC_NEW_CTL_1, 0x03, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF", AQT1000_MBHC_NEW_CTL_2, 0x03, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN", AQT1000_HPH_OCP_CTL, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0x07, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL", AQT1000_ANA_MBHC_ELECT, 0x70, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT", AQT1000_ANA_MBHC_RESULT_3, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL", AQT1000_ANA_MICB1, 0xC0, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME", AQT1000_HPH_CNP_WG_TIME, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN", AQT1000_ANA_HPH, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN", AQT1000_ANA_HPH, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN", AQT1000_ANA_HPH, 0xC0, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE", AQT1000_ANA_MBHC_RESULT_3, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL", 0, 0, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN", AQT1000_MBHC_CTL_BCS, 0x02, 1, 0), WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS", AQT1000_MBHC_NEW_FSM_STATUS, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL", AQT1000_MBHC_NEW_CTL_2, 0x70, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN", AQT1000_HPH_L_TEST, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN", AQT1000_HPH_R_TEST, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS", AQT1000_INTR_CTRL_INT_STATUS_2, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS", AQT1000_INTR_CTRL_INT_STATUS_2, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN", AQT1000_MBHC_NEW_CTL_1, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", AQT1000_MBHC_NEW_FSM_STATUS, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", AQT1000_MBHC_NEW_FSM_STATUS, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", AQT1000_MBHC_NEW_ADC_RESULT, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", AQT1000_ANA_MICB1, 0x3F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE", AQT1000_MBHC_NEW_CTL_1, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE", AQT1000_MBHC_NEW_CTL_1, 0x04, 2, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN", AQT1000_ANA_MBHC_ZDET, 0x02, 1, 0), }; static const struct wcd_mbhc_intr intr_ids = { .mbhc_sw_intr = AQT1000_IRQ_MBHC_SW_DET, .mbhc_btn_press_intr = AQT1000_IRQ_MBHC_BUTTON_PRESS_DET, .mbhc_btn_release_intr = AQT1000_IRQ_MBHC_BUTTON_RELEASE_DET, .mbhc_hs_ins_intr = AQT1000_IRQ_MBHC_ELECT_INS_REM_LEG_DET, .mbhc_hs_rem_intr = AQT1000_IRQ_MBHC_ELECT_INS_REM_DET, .hph_left_ocp = AQT1000_IRQ_HPH_PA_OCPL_FAULT, .hph_right_ocp = AQT1000_IRQ_HPH_PA_OCPR_FAULT, }; struct aqt_mbhc_zdet_param { u16 ldo_ctl; u16 noff; u16 nshift; u16 btn5; u16 btn6; u16 btn7; }; static int aqt_mbhc_request_irq(struct snd_soc_component *component, int irq, irq_handler_t handler, const char *name, void *data) { struct aqt1000 *aqt = dev_get_drvdata(component->dev); return aqt_request_irq(aqt, irq, name, handler, data); } static void aqt_mbhc_irq_control(struct snd_soc_component *component, int irq, bool enable) { struct aqt1000 *aqt = dev_get_drvdata(component->dev); if (enable) aqt_enable_irq(aqt, irq); else aqt_disable_irq(aqt, irq); } static int aqt_mbhc_free_irq(struct snd_soc_component *component, int irq, void *data) { struct aqt1000 *aqt = dev_get_drvdata(component->dev); aqt_free_irq(aqt, irq, data); return 0; } static void aqt_mbhc_clk_setup(struct snd_soc_component *component, bool enable) { if (enable) snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_1, 0x80, 0x80); else snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_1, 0x80, 0x00); } static int aqt_mbhc_btn_to_num(struct snd_soc_component *component) { return snd_soc_component_read32(component, AQT1000_ANA_MBHC_RESULT_3) & 0x7; } static void aqt_mbhc_mbhc_bias_control(struct snd_soc_component *component, bool enable) { if (enable) snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_ELECT, 0x01, 0x01); else snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_ELECT, 0x01, 0x00); } static void aqt_mbhc_program_btn_thr(struct snd_soc_component *component, s16 *btn_low, s16 *btn_high, int num_btn, bool is_micbias) { int i; int vth; if (num_btn > WCD_MBHC_DEF_BUTTONS) { dev_err(component->dev, "%s: invalid number of buttons: %d\n", __func__, num_btn); return; } for (i = 0; i < num_btn; i++) { vth = ((btn_high[i] * 2) / 25) & 0x3F; snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN0 + i, 0xFC, vth << 2); dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n", __func__, i, btn_high[i], vth); } } static bool aqt_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock) { struct snd_soc_component *component = mbhc->component; struct aqt1000 *aqt = dev_get_drvdata(component->dev); bool ret = 0; dev_dbg(aqt->dev, "%s: lock: %d\n", __func__, lock); return ret; } static int aqt_mbhc_register_notifier(struct wcd_mbhc *mbhc, struct notifier_block *nblock, bool enable) { struct aqt1000_mbhc *aqt_mbhc; aqt_mbhc = container_of(mbhc, struct aqt1000_mbhc, wcd_mbhc); if (enable) return blocking_notifier_chain_register(&aqt_mbhc->notifier, nblock); else return blocking_notifier_chain_unregister( &aqt_mbhc->notifier, nblock); } static bool aqt_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num) { u8 val; if (micb_num == MIC_BIAS_1) { val = ((snd_soc_component_read32( mbhc->component, AQT1000_ANA_MICB1) & 0xC0) >> 6); if (val == 0x01) return true; } return false; } static bool aqt_mbhc_hph_pa_on_status(struct snd_soc_component *component) { return (snd_soc_component_read32(component, AQT1000_ANA_HPH) & 0xC0) ? true : false; } static void aqt_mbhc_hph_l_pull_up_control(struct snd_soc_component *component, int pull_up_cur) { /* Default pull up current to 2uA */ if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA || pull_up_cur == HS_PULLUP_I_DEFAULT) pull_up_cur = HS_PULLUP_I_2P0_UA; dev_dbg(component->dev, "%s: HS pull up current:%d\n", __func__, pull_up_cur); snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_INT_MECH_DET_CURRENT, 0x1F, pull_up_cur); } static int aqt_mbhc_request_micbias(struct snd_soc_component *component, int micb_num, int req) { int ret = 0; /* * If micbias is requested, make sure that there * is vote to enable mclk */ if (req == MICB_ENABLE) aqt_cdc_mclk_enable(component, true); ret = aqt_micbias_control(component, micb_num, req, false); /* * Release vote for mclk while requesting for * micbias disable */ if (req == MICB_DISABLE) aqt_cdc_mclk_enable(component, false); return ret; } static void aqt_mbhc_micb_ramp_control(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, AQT1000_ANA_MICB1_RAMP, 0x1C, 0x0C); snd_soc_component_update_bits(component, AQT1000_ANA_MICB1_RAMP, 0x80, 0x80); } else { snd_soc_component_update_bits(component, AQT1000_ANA_MICB1_RAMP, 0x80, 0x00); snd_soc_component_update_bits(component, AQT1000_ANA_MICB1_RAMP, 0x1C, 0x00); } } static struct firmware_cal *aqt_get_hwdep_fw_cal(struct wcd_mbhc *mbhc, enum wcd_cal_type type) { struct aqt1000_mbhc *aqt_mbhc; struct firmware_cal *hwdep_cal; struct snd_soc_component *component = mbhc->component; aqt_mbhc = container_of(mbhc, struct aqt1000_mbhc, wcd_mbhc); if (!component) { pr_err("%s: NULL codec pointer\n", __func__); return NULL; } hwdep_cal = wcdcal_get_fw_cal(aqt_mbhc->fw_data, type); if (!hwdep_cal) dev_err(component->dev, "%s: cal not sent by %d\n", __func__, type); return hwdep_cal; } static int aqt_mbhc_micb_ctrl_threshold_mic( struct snd_soc_component *component, int micb_num, bool req_en) { struct aqt1000_pdata *pdata = dev_get_platdata(component->dev); int rc, micb_mv; if (micb_num != MIC_BIAS_1) return -EINVAL; /* * If device tree micbias level is already above the minimum * voltage needed to detect threshold microphone, then do * not change the micbias, just return. */ if (pdata->micbias.micb1_mv >= WCD_MBHC_THR_HS_MICB_MV) return 0; micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb1_mv; rc = aqt_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_1); return rc; } static inline void aqt_mbhc_get_result_params(struct aqt1000 *aqt, s16 *d1_a, u16 noff, int32_t *zdet) { int i; int val, val1; s16 c1; s32 x1, d1; int32_t denom; int minCode_param[] = { 3277, 1639, 820, 410, 205, 103, 52, 26 }; regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x20, 0x20); for (i = 0; i < AQT_ZDET_NUM_MEASUREMENTS; i++) { regmap_read(aqt->regmap, AQT1000_ANA_MBHC_RESULT_2, &val); if (val & 0x80) break; } val = val << 0x8; regmap_read(aqt->regmap, AQT1000_ANA_MBHC_RESULT_1, &val1); val |= val1; regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x20, 0x00); x1 = AQT_MBHC_GET_X1(val); c1 = AQT_MBHC_GET_C1(val); /* If ramp is not complete, give additional 5ms */ if ((c1 < 2) && x1) usleep_range(5000, 5050); if (!c1 || !x1) { dev_dbg(aqt->dev, "%s: Impedance detect ramp error, c1=%d, x1=0x%x\n", __func__, c1, x1); goto ramp_down; } d1 = d1_a[c1]; denom = (x1 * d1) - (1 << (14 - noff)); if (denom > 0) *zdet = (AQT_MBHC_ZDET_CONST * 1000) / denom; else if (x1 < minCode_param[noff]) *zdet = AQT_ZDET_FLOATING_IMPEDANCE; dev_dbg(aqt->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n", __func__, d1, c1, x1, *zdet); ramp_down: i = 0; while (x1) { regmap_bulk_read(aqt->regmap, AQT1000_ANA_MBHC_RESULT_1, (u8 *)&val, 2); x1 = AQT_MBHC_GET_X1(val); i++; if (i == AQT_ZDET_NUM_MEASUREMENTS) break; } } static void aqt_mbhc_zdet_ramp(struct snd_soc_component *component, struct aqt_mbhc_zdet_param *zdet_param, int32_t *zl, int32_t *zr, s16 *d1_a) { struct aqt1000 *aqt = dev_get_drvdata(component->dev); int32_t zdet = 0; snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL, 0x70, zdet_param->ldo_ctl << 4); snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN5, 0xFC, zdet_param->btn5); snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN6, 0xFC, zdet_param->btn6); snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN7, 0xFC, zdet_param->btn7); snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL, 0x0F, zdet_param->noff); snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_ZDET_RAMP_CTL, 0x0F, zdet_param->nshift); if (!zl) goto z_right; /* Start impedance measurement for HPH_L */ regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x80, 0x80); dev_dbg(aqt->dev, "%s: ramp for HPH_L, noff = %d\n", __func__, zdet_param->noff); aqt_mbhc_get_result_params(aqt, d1_a, zdet_param->noff, &zdet); regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x80, 0x00); *zl = zdet; z_right: if (!zr) return; /* Start impedance measurement for HPH_R */ regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x40, 0x40); dev_dbg(aqt->dev, "%s: ramp for HPH_R, noff = %d\n", __func__, zdet_param->noff); aqt_mbhc_get_result_params(aqt, d1_a, zdet_param->noff, &zdet); regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x40, 0x00); *zr = zdet; } static inline void aqt_wcd_mbhc_qfuse_cal(struct snd_soc_component *component, int32_t *z_val, int flag_l_r) { s16 q1; int q1_cal; if (*z_val < (AQT_ZDET_VAL_400/1000)) q1 = snd_soc_component_read32(component, AQT1000_CHIP_CFG0_EFUSE_VAL_OUT1 + (2 * flag_l_r)); else q1 = snd_soc_component_read32(component, AQT1000_CHIP_CFG0_EFUSE_VAL_OUT2 + (2 * flag_l_r)); if (q1 & 0x80) q1_cal = (10000 - ((q1 & 0x7F) * 25)); else q1_cal = (10000 + (q1 * 25)); if (q1_cal > 0) *z_val = ((*z_val) * 10000) / q1_cal; } static void aqt_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr) { struct snd_soc_component *component = mbhc->component; struct aqt1000 *aqt = dev_get_drvdata(component->dev); s16 reg0, reg1, reg2, reg3, reg4; int32_t z1L, z1R, z1Ls; int zMono, z_diff1, z_diff2; bool is_fsm_disable = false; struct aqt_mbhc_zdet_param zdet_param[] = { {4, 0, 4, 0x08, 0x14, 0x18}, /* < 32ohm */ {2, 0, 3, 0x18, 0x7C, 0x90}, /* 32ohm < Z < 400ohm */ {1, 4, 5, 0x18, 0x7C, 0x90}, /* 400ohm < Z < 1200ohm */ {1, 6, 7, 0x18, 0x7C, 0x90}, /* >1200ohm */ }; struct aqt_mbhc_zdet_param *zdet_param_ptr = NULL; s16 d1_a[][4] = { {0, 30, 90, 30}, {0, 30, 30, 5}, {0, 30, 30, 5}, {0, 30, 30, 5}, }; s16 *d1 = NULL; WCD_MBHC_RSC_ASSERT_LOCKED(mbhc); reg0 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN5); reg1 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN6); reg2 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN7); reg3 = snd_soc_component_read32(component, AQT1000_MBHC_CTL_CLK); reg4 = snd_soc_component_read32(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL); if (snd_soc_component_read32(component, AQT1000_ANA_MBHC_ELECT) & 0x80) { is_fsm_disable = true; regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ELECT, 0x80, 0x00); } /* For NO-jack, disable L_DET_EN before Z-det measurements */ if (mbhc->hphl_swh) regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_MECH, 0x80, 0x00); /* Turn off 100k pull down on HPHL */ regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_MECH, 0x01, 0x00); /* First get impedance on Left */ d1 = d1_a[1]; zdet_param_ptr = &zdet_param[1]; aqt_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1); if (!AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z1L)) goto left_ch_impedance; /* Second ramp for left ch */ if (z1L < AQT_ZDET_VAL_32) { zdet_param_ptr = &zdet_param[0]; d1 = d1_a[0]; } else if ((z1L > AQT_ZDET_VAL_400) && (z1L <= AQT_ZDET_VAL_1200)) { zdet_param_ptr = &zdet_param[2]; d1 = d1_a[2]; } else if (z1L > AQT_ZDET_VAL_1200) { zdet_param_ptr = &zdet_param[3]; d1 = d1_a[3]; } aqt_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1); left_ch_impedance: if ((z1L == AQT_ZDET_FLOATING_IMPEDANCE) || (z1L > AQT_ZDET_VAL_100K)) { *zl = AQT_ZDET_FLOATING_IMPEDANCE; zdet_param_ptr = &zdet_param[1]; d1 = d1_a[1]; } else { *zl = z1L/1000; aqt_wcd_mbhc_qfuse_cal(component, zl, 0); } dev_dbg(component->dev, "%s: impedance on HPH_L = %d(ohms)\n", __func__, *zl); /* Start of right impedance ramp and calculation */ aqt_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1); if (AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z1R)) { if (((z1R > AQT_ZDET_VAL_1200) && (zdet_param_ptr->noff == 0x6)) || ((*zl) != AQT_ZDET_FLOATING_IMPEDANCE)) goto right_ch_impedance; /* Second ramp for right ch */ if (z1R < AQT_ZDET_VAL_32) { zdet_param_ptr = &zdet_param[0]; d1 = d1_a[0]; } else if ((z1R > AQT_ZDET_VAL_400) && (z1R <= AQT_ZDET_VAL_1200)) { zdet_param_ptr = &zdet_param[2]; d1 = d1_a[2]; } else if (z1R > AQT_ZDET_VAL_1200) { zdet_param_ptr = &zdet_param[3]; d1 = d1_a[3]; } aqt_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1); } right_ch_impedance: if ((z1R == AQT_ZDET_FLOATING_IMPEDANCE) || (z1R > AQT_ZDET_VAL_100K)) { *zr = AQT_ZDET_FLOATING_IMPEDANCE; } else { *zr = z1R/1000; aqt_wcd_mbhc_qfuse_cal(component, zr, 1); } dev_dbg(component->dev, "%s: impedance on HPH_R = %d(ohms)\n", __func__, *zr); /* Mono/stereo detection */ if ((*zl == AQT_ZDET_FLOATING_IMPEDANCE) && (*zr == AQT_ZDET_FLOATING_IMPEDANCE)) { dev_dbg(component->dev, "%s: plug type is invalid or extension cable\n", __func__); goto zdet_complete; } if ((*zl == AQT_ZDET_FLOATING_IMPEDANCE) || (*zr == AQT_ZDET_FLOATING_IMPEDANCE) || ((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) || ((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) { dev_dbg(component->dev, "%s: Mono plug type with one ch floating or shorted to GND\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_MONO; goto zdet_complete; } snd_soc_component_update_bits(component, AQT1000_HPH_R_ATEST, 0x02, 0x02); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x40, 0x01); if (*zl < (AQT_ZDET_VAL_32/1000)) aqt_mbhc_zdet_ramp(component, &zdet_param[0], &z1Ls, NULL, d1); else aqt_mbhc_zdet_ramp(component, &zdet_param[1], &z1Ls, NULL, d1); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x40, 0x00); snd_soc_component_update_bits(component, AQT1000_HPH_R_ATEST, 0x02, 0x00); z1Ls /= 1000; aqt_wcd_mbhc_qfuse_cal(component, &z1Ls, 0); /* Parallel of left Z and 9 ohm pull down resistor */ zMono = ((*zl) * 9) / ((*zl) + 9); z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls); z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl)); if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) { dev_dbg(component->dev, "%s: stereo plug type detected\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_STEREO; } else { dev_dbg(component->dev, "%s: MONO plug type detected\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_MONO; } zdet_complete: snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN5, reg0); snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN6, reg1); snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN7, reg2); /* Turn on 100k pull down on HPHL */ regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_MECH, 0x01, 0x01); /* For NO-jack, re-enable L_DET_EN after Z-det measurements */ if (mbhc->hphl_swh) regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_MECH, 0x80, 0x80); snd_soc_component_write(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL, reg4); snd_soc_component_write(component, AQT1000_MBHC_CTL_CLK, reg3); if (is_fsm_disable) regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ELECT, 0x80, 0x80); } static void aqt_mbhc_gnd_det_ctrl(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH, 0x02, 0x02); snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH, 0x40, 0x40); } else { snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH, 0x40, 0x00); snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH, 0x02, 0x00); } } static void aqt_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x40, 0x40); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x10, 0x10); } else { snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x40, 0x00); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2, 0x10, 0x00); } } static void aqt_mbhc_moisture_config(struct wcd_mbhc *mbhc) { struct snd_soc_component *component = mbhc->component; if ((mbhc->moist_rref == R_OFF) || (mbhc->mbhc_cfg->enable_usbc_analog)) { snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_2, 0x0C, R_OFF << 2); return; } /* Do not enable moisture detection if jack type is NC */ if (!mbhc->hphl_swh) { dev_dbg(component->dev, "%s: disable moisture detection for NC\n", __func__); snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_2, 0x0C, R_OFF << 2); return; } snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_2, 0x0C, mbhc->moist_rref << 2); } static void aqt_update_anc_state(struct snd_soc_component *component, bool enable, int anc_num) { if (enable) snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0 + (20 * anc_num), 0x10, 0x10); else snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0 + (20 * anc_num), 0x10, 0x00); } static bool aqt_is_anc_on(struct wcd_mbhc *mbhc) { bool anc_on = false; u16 ancl, ancr; ancl = (snd_soc_component_read32(mbhc->component, AQT1000_CDC_RX1_RX_PATH_CFG0)) & 0x10; ancr = (snd_soc_component_read32(mbhc->component, AQT1000_CDC_RX2_RX_PATH_CFG0)) & 0x10; anc_on = !!(ancl | ancr); return anc_on; } static const struct wcd_mbhc_cb mbhc_cb = { .request_irq = aqt_mbhc_request_irq, .irq_control = aqt_mbhc_irq_control, .free_irq = aqt_mbhc_free_irq, .clk_setup = aqt_mbhc_clk_setup, .map_btn_code_to_num = aqt_mbhc_btn_to_num, .mbhc_bias = aqt_mbhc_mbhc_bias_control, .set_btn_thr = aqt_mbhc_program_btn_thr, .lock_sleep = aqt_mbhc_lock_sleep, .register_notifier = aqt_mbhc_register_notifier, .micbias_enable_status = aqt_mbhc_micb_en_status, .hph_pa_on_status = aqt_mbhc_hph_pa_on_status, .hph_pull_up_control_v2 = aqt_mbhc_hph_l_pull_up_control, .mbhc_micbias_control = aqt_mbhc_request_micbias, .mbhc_micb_ramp_control = aqt_mbhc_micb_ramp_control, .get_hwdep_fw_cal = aqt_get_hwdep_fw_cal, .mbhc_micb_ctrl_thr_mic = aqt_mbhc_micb_ctrl_threshold_mic, .compute_impedance = aqt_wcd_mbhc_calc_impedance, .mbhc_gnd_det_ctrl = aqt_mbhc_gnd_det_ctrl, .hph_pull_down_ctrl = aqt_mbhc_hph_pull_down_ctrl, .mbhc_moisture_config = aqt_mbhc_moisture_config, .update_anc_state = aqt_update_anc_state, .is_anc_on = aqt_is_anc_on, }; static int aqt_get_hph_type(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aqt1000 *aqt = snd_soc_component_get_drvdata(component); struct aqt1000_mbhc *aqt_mbhc = aqt->mbhc; struct wcd_mbhc *mbhc; if (!aqt_mbhc) { dev_err(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } mbhc = &aqt_mbhc->wcd_mbhc; ucontrol->value.integer.value[0] = (u32) mbhc->hph_type; dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type); return 0; } static int aqt_hph_impedance_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { uint32_t zl, zr; bool hphr; struct soc_multi_mixer_control *mc; struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aqt1000 *aqt = snd_soc_component_get_drvdata(component); struct aqt1000_mbhc *aqt_mbhc = aqt->mbhc; if (!aqt_mbhc) { dev_err(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } mc = (struct soc_multi_mixer_control *)(kcontrol->private_value); hphr = mc->shift; wcd_mbhc_get_impedance(&aqt_mbhc->wcd_mbhc, &zl, &zr); dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr); ucontrol->value.integer.value[0] = hphr ? zr : zl; return 0; } static const struct snd_kcontrol_new hph_type_detect_controls[] = { SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0, aqt_get_hph_type, NULL), }; static const struct snd_kcontrol_new impedance_detect_controls[] = { SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0, aqt_hph_impedance_get, NULL), SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0, aqt_hph_impedance_get, NULL), }; /* * aqt_mbhc_get_impedance: get impedance of headphone left and right channels * @aqt_mbhc: handle to struct aqt_mbhc * * @zl: handle to left-ch impedance * @zr: handle to right-ch impedance * return 0 for success or error code in case of failure */ int aqt_mbhc_get_impedance(struct aqt1000_mbhc *aqt_mbhc, uint32_t *zl, uint32_t *zr) { if (!aqt_mbhc) { pr_err("%s: mbhc not initialized!\n", __func__); return -EINVAL; } if (!zl || !zr) { pr_err("%s: zl or zr null!\n", __func__); return -EINVAL; } return wcd_mbhc_get_impedance(&aqt_mbhc->wcd_mbhc, zl, zr); } EXPORT_SYMBOL(aqt_mbhc_get_impedance); /* * aqt_mbhc_hs_detect: starts mbhc insertion/removal functionality * @component: handle to snd_soc_component * * @mbhc_cfg: handle to mbhc configuration structure * return 0 if mbhc_start is success or error code in case of failure */ int aqt_mbhc_hs_detect(struct snd_soc_component *component, struct wcd_mbhc_config *mbhc_cfg) { struct aqt1000 *aqt; struct aqt1000_mbhc *aqt_mbhc; if (!component) { pr_err("%s: codec is NULL\n", __func__); return -EINVAL; } aqt = snd_soc_component_get_drvdata(component); if (!aqt) { pr_err("%s: aqt is NULL\n", __func__); return -EINVAL; } aqt_mbhc = aqt->mbhc; if (!aqt_mbhc) { dev_err(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } return wcd_mbhc_start(&aqt_mbhc->wcd_mbhc, mbhc_cfg); } EXPORT_SYMBOL(aqt_mbhc_hs_detect); /* * aqt_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality * @component: handle to snd_soc_component * */ void aqt_mbhc_hs_detect_exit(struct snd_soc_component *component) { struct aqt1000 *aqt; struct aqt1000_mbhc *aqt_mbhc; if (!component) { pr_err("%s: codec is NULL\n", __func__); return; } aqt = snd_soc_component_get_drvdata(component); if (!aqt) { pr_err("%s: aqt is NULL\n", __func__); return; } aqt_mbhc = aqt->mbhc; if (!aqt_mbhc) { dev_err(component->dev, "%s: mbhc not initialized!\n", __func__); return; } wcd_mbhc_stop(&aqt_mbhc->wcd_mbhc); } EXPORT_SYMBOL(aqt_mbhc_hs_detect_exit); /* * aqt_mbhc_post_ssr_init: initialize mbhc for aqt post subsystem restart * @mbhc: poniter to aqt_mbhc structure * @component: handle to snd_soc_component * * * return 0 if mbhc_init is success or error code in case of failure */ int aqt_mbhc_post_ssr_init(struct aqt1000_mbhc *mbhc, struct snd_soc_component *component) { int ret; struct wcd_mbhc *wcd_mbhc; if (!mbhc || !component) return -EINVAL; wcd_mbhc = &mbhc->wcd_mbhc; if (wcd_mbhc == NULL) { pr_err("%s: wcd_mbhc is NULL\n", __func__); return -EINVAL; } wcd_mbhc_deinit(wcd_mbhc); ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids, wcd_mbhc_registers, AQT_ZDET_SUPPORTED); if (ret) { dev_err(component->dev, "%s: mbhc initialization failed\n", __func__); goto done; } done: return ret; } EXPORT_SYMBOL(aqt_mbhc_post_ssr_init); /* * aqt_mbhc_init: initialize mbhc for aqt * @mbhc: poniter to aqt_mbhc struct pointer to store the configs * @component: handle to snd_soc_component * * @fw_data: handle to firmware data * * return 0 if mbhc_init is success or error code in case of failure */ int aqt_mbhc_init(struct aqt1000_mbhc **mbhc, struct snd_soc_component *component, struct fw_info *fw_data) { struct aqt1000_mbhc *aqt_mbhc; struct wcd_mbhc *wcd_mbhc; int ret; if (!component) { pr_err("%s: codec is NULL\n", __func__); return -EINVAL; } aqt_mbhc = devm_kzalloc(component->dev, sizeof(struct aqt1000_mbhc), GFP_KERNEL); if (!aqt_mbhc) return -ENOMEM; aqt_mbhc->aqt = dev_get_drvdata(component->dev); aqt_mbhc->fw_data = fw_data; BLOCKING_INIT_NOTIFIER_HEAD(&aqt_mbhc->notifier); wcd_mbhc = &aqt_mbhc->wcd_mbhc; if (wcd_mbhc == NULL) { pr_err("%s: wcd_mbhc is NULL\n", __func__); ret = -EINVAL; goto err; } /* Setting default mbhc detection logic to ADC */ wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC; ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids, wcd_mbhc_registers, AQT_ZDET_SUPPORTED); if (ret) { dev_err(component->dev, "%s: mbhc initialization failed\n", __func__); goto err; } (*mbhc) = aqt_mbhc; snd_soc_add_component_controls(component, impedance_detect_controls, ARRAY_SIZE(impedance_detect_controls)); snd_soc_add_component_controls(component, hph_type_detect_controls, ARRAY_SIZE(hph_type_detect_controls)); return 0; err: devm_kfree(component->dev, aqt_mbhc); return ret; } EXPORT_SYMBOL(aqt_mbhc_init); /* * aqt_mbhc_deinit: deinitialize mbhc for aqt * @component: handle to snd_soc_component * */ void aqt_mbhc_deinit(struct snd_soc_component *component) { struct aqt1000 *aqt; struct aqt1000_mbhc *aqt_mbhc; if (!component) { pr_err("%s: component is NULL\n", __func__); return; } aqt = snd_soc_component_get_drvdata(component); if (!aqt) { pr_err("%s: aqt is NULL\n", __func__); return; } aqt_mbhc = aqt->mbhc; if (aqt_mbhc) { wcd_mbhc_deinit(&aqt_mbhc->wcd_mbhc); devm_kfree(component->dev, aqt_mbhc); } } EXPORT_SYMBOL(aqt_mbhc_deinit);