touch: add drivers

Add all drivers for new platforms.

Change-Id: Ie9947b0c6f8ddfee7dab6dfa80d6aca62323f4da
Signed-off-by: Fei Mao <feim1@codeaurora.org>
This commit is contained in:
Fei Mao
2021-10-19 19:03:59 +08:00
parent 7bcfa88cc1
commit cb9d543e8a
62 changed files with 64222 additions and 0 deletions

View File

@@ -0,0 +1,548 @@
/*
*
* FocalTech TouchScreen driver.
*
* Copyright (c) 2012-2019, FocalTech Systems, Ltd., all rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/************************************************************************
*
* File Name: focaltech_i2c.c
*
* Author: Focaltech Driver Team
*
* Created: 2016-08-04
*
* Abstract: i2c communication with TP
*
* Version: v1.0
*
* Revision History:
*
************************************************************************/
/*****************************************************************************
* Included header files
*****************************************************************************/
#include "focaltech_core.h"
#include <linux/pm_runtime.h>
/*****************************************************************************
* Private constant and macro definitions using #define
*****************************************************************************/
#define I2C_RETRY_NUMBER 3
#define I2C_BUF_LENGTH 256
/*****************************************************************************
* Private enumerations, structures and unions using typedef
*****************************************************************************/
/*****************************************************************************
* Static variables
*****************************************************************************/
static struct fts_ts_data *ts_data;
/*****************************************************************************
* Global variable or extern global variabls/functions
*****************************************************************************/
/*****************************************************************************
* Static function prototypes
*****************************************************************************/
/*****************************************************************************
* functions body
*****************************************************************************/
static int fts_i2c_read(u8 *cmd, u32 cmdlen, u8 *data, u32 datalen)
{
int ret = 0;
int i = 0;
struct i2c_msg msg_list[2];
struct i2c_msg *msg = NULL;
int msg_num = 0;
/* must have data when read */
if (!ts_data || !ts_data->client || !data || !datalen
|| (datalen >= I2C_BUF_LENGTH) || (cmdlen >= I2C_BUF_LENGTH)) {
FTS_ERROR("fts_data/client/cmdlen(%d)/data/datalen(%d) is invalid",
cmdlen, datalen);
return -EINVAL;
}
mutex_lock(&ts_data->bus_lock);
memset(&msg_list[0], 0, sizeof(struct i2c_msg));
memset(&msg_list[1], 0, sizeof(struct i2c_msg));
memcpy(ts_data->bus_tx_buf, cmd, cmdlen);
msg_list[0].addr = ts_data->client->addr;
msg_list[0].flags = 0;
msg_list[0].len = cmdlen;
msg_list[0].buf = ts_data->bus_tx_buf;
msg_list[1].addr = ts_data->client->addr;
msg_list[1].flags = I2C_M_RD;
msg_list[1].len = datalen;
msg_list[1].buf = ts_data->bus_rx_buf;
if (cmd && cmdlen) {
msg = &msg_list[0];
msg_num = 2;
} else {
msg = &msg_list[1];
msg_num = 1;
}
for (i = 0; i < I2C_RETRY_NUMBER; i++) {
ret = i2c_transfer(ts_data->client->adapter, msg, msg_num);
if (ret < 0) {
#ifdef CONFIG_FTS_TRUSTED_TOUCH
#ifdef CONFIG_ARCH_QTI_VM
if (atomic_read(&ts_data->trusted_touch_enabled) &&
ret == -ECONNRESET) {
pr_err("failed i2c read reacquiring session\n");
pm_runtime_put_sync(
ts_data->client->adapter->dev.parent);
pm_runtime_get_sync(
ts_data->client->adapter->dev.parent);
}
#endif
#endif
FTS_ERROR("i2c_transfer(read) fail,ret:%d", ret);
} else {
memcpy(data, ts_data->bus_rx_buf, datalen);
break;
}
}
if (ret < 0) {
#ifdef CONFIG_FTS_TRUSTED_TOUCH
#ifdef CONFIG_ARCH_QTI_VM
pr_err("initiating abort due to i2c xfer failure\n");
fts_ts_trusted_touch_tvm_i2c_failure_report(ts_data);
#endif
#endif
}
mutex_unlock(&ts_data->bus_lock);
return ret;
}
static int fts_i2c_write(u8 *writebuf, u32 writelen)
{
int ret = 0;
int i = 0;
struct i2c_msg msgs;
if (!ts_data || !ts_data->client || !writebuf || !writelen
|| (writelen >= I2C_BUF_LENGTH)) {
FTS_ERROR("fts_data/client/data/datalen(%d) is invalid", writelen);
return -EINVAL;
}
mutex_lock(&ts_data->bus_lock);
memset(&msgs, 0, sizeof(struct i2c_msg));
memcpy(ts_data->bus_tx_buf, writebuf, writelen);
msgs.addr = ts_data->client->addr;
msgs.flags = 0;
msgs.len = writelen;
msgs.buf = ts_data->bus_tx_buf;
for (i = 0; i < I2C_RETRY_NUMBER; i++) {
ret = i2c_transfer(ts_data->client->adapter, &msgs, 1);
if (ret < 0) {
#ifdef CONFIG_FTS_TRUSTED_TOUCH
#ifdef CONFIG_ARCH_QTI_VM
if (atomic_read(&ts_data->trusted_touch_enabled) &&
ret == -ECONNRESET){
pr_err("failed i2c write reacquiring session\n");
pm_runtime_put_sync(
ts_data->client->adapter->dev.parent);
pm_runtime_get_sync(
ts_data->client->adapter->dev.parent);
}
#endif
#endif
FTS_ERROR("i2c_transfer(write) fail,ret:%d", ret);
} else {
break;
}
}
if (ret < 0) {
#ifdef CONFIG_FTS_TRUSTED_TOUCH
#ifdef CONFIG_ARCH_QTI_VM
pr_err("initiating abort due to i2c xfer failure\n");
fts_ts_trusted_touch_tvm_i2c_failure_report(ts_data);
#endif
#endif
}
mutex_unlock(&ts_data->bus_lock);
return ret;
}
static int fts_i2c_init(struct fts_ts_data *ts_data)
{
FTS_FUNC_ENTER();
ts_data->bus_tx_buf = kzalloc(I2C_BUF_LENGTH, GFP_KERNEL);
if (ts_data->bus_tx_buf == NULL) {
FTS_ERROR("failed to allocate memory for bus_tx_buf");
return -ENOMEM;
}
ts_data->bus_rx_buf = kzalloc(I2C_BUF_LENGTH, GFP_KERNEL);
if (ts_data->bus_rx_buf == NULL) {
FTS_ERROR("failed to allocate memory for bus_rx_buf");
return -ENOMEM;
}
FTS_FUNC_EXIT();
return 0;
}
static int fts_i2c_exit(struct fts_ts_data *ts_data)
{
FTS_FUNC_ENTER();
if (ts_data && ts_data->bus_tx_buf) {
kfree(ts_data->bus_tx_buf);
ts_data->bus_tx_buf = NULL;
}
if (ts_data && ts_data->bus_rx_buf) {
kfree(ts_data->bus_rx_buf);
ts_data->bus_rx_buf = NULL;
}
FTS_FUNC_EXIT();
return 0;
}
/*****************************************************************************
* Private constant and macro definitions using #define
****************************************************************************/
#define SPI_RETRY_NUMBER 3
#define CS_HIGH_DELAY 150 /* unit: us */
#define SPI_BUF_LENGTH 256
#define DATA_CRC_EN 0x20
#define WRITE_CMD 0x00
#define READ_CMD (0x80 | DATA_CRC_EN)
#define SPI_DUMMY_BYTE 3
#define SPI_HEADER_LENGTH 6 /*CRC*/
/*****************************************************************************
* functions body
****************************************************************************/
/* spi interface */
static int fts_spi_transfer(u8 *tx_buf, u8 *rx_buf, u32 len)
{
int ret = 0;
struct spi_device *spi = fts_data->spi;
struct spi_message msg;
struct spi_transfer xfer = {
.tx_buf = tx_buf,
.rx_buf = rx_buf,
.len = len,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
ret = spi_sync(spi, &msg);
if (ret) {
FTS_ERROR("spi_sync fail,ret:%d", ret);
return ret;
}
return ret;
}
static void crckermit(u8 *data, u32 len, u16 *crc_out)
{
u32 i = 0;
u32 j = 0;
u16 crc = 0xFFFF;
for (i = 0; i < len; i++) {
crc ^= data[i];
for (j = 0; j < 8; j++) {
if (crc & 0x01)
crc = (crc >> 1) ^ 0x8408;
else
crc = (crc >> 1);
}
}
*crc_out = crc;
}
static int rdata_check(u8 *rdata, u32 rlen)
{
u16 crc_calc = 0;
u16 crc_read = 0;
crckermit(rdata, rlen - 2, &crc_calc);
crc_read = (u16)(rdata[rlen - 1] << 8) + rdata[rlen - 2];
if (crc_calc != crc_read)
return -EIO;
return 0;
}
static int fts_spi_write(u8 *writebuf, u32 writelen)
{
int ret = 0;
int i = 0;
struct fts_ts_data *ts_data = fts_data;
u8 *txbuf = NULL;
u8 *rxbuf = NULL;
u32 txlen = 0;
u32 txlen_need = writelen + SPI_HEADER_LENGTH + ts_data->dummy_byte;
u32 datalen = writelen - 1;
if (!writebuf || !writelen) {
FTS_ERROR("writebuf/len is invalid");
return -EINVAL;
}
mutex_lock(&ts_data->bus_lock);
if (txlen_need > SPI_BUF_LENGTH) {
txbuf = kzalloc(txlen_need, GFP_KERNEL);
if (txbuf == NULL) {
FTS_ERROR("txbuf malloc fail");
ret = -ENOMEM;
goto err_write;
}
rxbuf = kzalloc(txlen_need, GFP_KERNEL);
if (rxbuf == NULL) {
FTS_ERROR("rxbuf malloc fail");
ret = -ENOMEM;
goto err_write;
}
} else {
txbuf = ts_data->bus_tx_buf;
rxbuf = ts_data->bus_rx_buf;
memset(txbuf, 0x0, SPI_BUF_LENGTH);
memset(rxbuf, 0x0, SPI_BUF_LENGTH);
}
txbuf[txlen++] = writebuf[0];
txbuf[txlen++] = WRITE_CMD;
txbuf[txlen++] = (datalen >> 8) & 0xFF;
txbuf[txlen++] = datalen & 0xFF;
if (datalen > 0) {
txlen = txlen + SPI_DUMMY_BYTE;
memcpy(&txbuf[txlen], &writebuf[1], datalen);
txlen = txlen + datalen;
}
for (i = 0; i < SPI_RETRY_NUMBER; i++) {
ret = fts_spi_transfer(txbuf, rxbuf, txlen);
if ((ret == 0) && ((rxbuf[3] & 0xA0) == 0))
break;
FTS_DEBUG("data write(addr:%x),status:%x,retry:%d,ret:%d",
writebuf[0], rxbuf[3], i, ret);
ret = -EIO;
udelay(CS_HIGH_DELAY);
}
if (ret < 0) {
FTS_ERROR("data write(addr:%x) fail,status:%x,ret:%d",
writebuf[0], rxbuf[3], ret);
}
err_write:
if (txlen_need > SPI_BUF_LENGTH) {
kfree(txbuf);
kfree(rxbuf);
}
udelay(CS_HIGH_DELAY);
mutex_unlock(&ts_data->bus_lock);
return ret;
}
static int fts_spi_read(u8 *cmd, u32 cmdlen, u8 *data, u32 datalen)
{
int ret = 0;
int i = 0;
u8 *txbuf = NULL;
u8 *rxbuf = NULL;
u32 txlen = 0;
u32 txlen_need = datalen + SPI_HEADER_LENGTH + ts_data->dummy_byte;
u8 ctrl = READ_CMD;
u32 dp = 0;
if (!cmd || !cmdlen || !data || !datalen) {
FTS_ERROR("cmd/cmdlen/data/datalen is invalid");
return -EINVAL;
}
mutex_lock(&ts_data->bus_lock);
if (txlen_need > SPI_BUF_LENGTH) {
txbuf = kzalloc(txlen_need, GFP_KERNEL);
if (txbuf == NULL) {
FTS_ERROR("txbuf malloc fail");
ret = -ENOMEM;
goto err_read;
}
rxbuf = kzalloc(txlen_need, GFP_KERNEL);
if (rxbuf == NULL) {
FTS_ERROR("rxbuf malloc fail");
ret = -ENOMEM;
goto err_read;
}
} else {
txbuf = ts_data->bus_tx_buf;
rxbuf = ts_data->bus_rx_buf;
memset(txbuf, 0x0, SPI_BUF_LENGTH);
memset(rxbuf, 0x0, SPI_BUF_LENGTH);
}
txbuf[txlen++] = cmd[0];
txbuf[txlen++] = ctrl;
txbuf[txlen++] = (datalen >> 8) & 0xFF;
txbuf[txlen++] = datalen & 0xFF;
dp = txlen + SPI_DUMMY_BYTE;
txlen = dp + datalen;
if (ctrl & DATA_CRC_EN)
txlen = txlen + 2;
for (i = 0; i < SPI_RETRY_NUMBER; i++) {
ret = fts_spi_transfer(txbuf, rxbuf, txlen);
if ((ret == 0) && ((rxbuf[3] & 0xA0) == 0)) {
memcpy(data, &rxbuf[dp], datalen);
/* crc check */
if (ctrl & DATA_CRC_EN) {
ret = rdata_check(&rxbuf[dp], txlen - dp);
if (ret < 0) {
FTS_DEBUG("data read(addr:%x) crc abnormal,retry:%d",
cmd[0], i);
udelay(CS_HIGH_DELAY);
continue;
}
}
break;
}
FTS_DEBUG("data read(addr:%x) status:%x,retry:%d,ret:%d",
cmd[0], rxbuf[3], i, ret);
ret = -EIO;
udelay(CS_HIGH_DELAY);
}
if (ret < 0) {
FTS_ERROR("data read(addr:%x) %s,status:%x,ret:%d", cmd[0],
(i >= SPI_RETRY_NUMBER) ? "crc abnormal" : "fail",
rxbuf[3], ret);
}
err_read:
if (txlen_need > SPI_BUF_LENGTH) {
kfree(txbuf);
kfree(rxbuf);
}
udelay(CS_HIGH_DELAY);
mutex_unlock(&ts_data->bus_lock);
return ret;
}
static int fts_spi_init(struct fts_ts_data *ts_data)
{
FTS_FUNC_ENTER();
ts_data->bus_tx_buf = kzalloc(SPI_BUF_LENGTH, GFP_KERNEL);
if (ts_data->bus_tx_buf == NULL) {
FTS_ERROR("failed to allocate memory for bus_tx_buf");
return -ENOMEM;
}
ts_data->bus_rx_buf = kzalloc(SPI_BUF_LENGTH, GFP_KERNEL);
if (ts_data->bus_rx_buf == NULL) {
FTS_ERROR("failed to allocate memory for bus_rx_buf");
return -ENOMEM;
}
ts_data->dummy_byte = SPI_DUMMY_BYTE;
FTS_FUNC_EXIT();
return 0;
}
static int fts_spi_exit(struct fts_ts_data *ts_data)
{
FTS_FUNC_ENTER();
if (ts_data && ts_data->bus_tx_buf) {
kfree(ts_data->bus_tx_buf);
ts_data->bus_tx_buf = NULL;
}
if (ts_data && ts_data->bus_rx_buf) {
kfree(ts_data->bus_rx_buf);
ts_data->bus_rx_buf = NULL;
}
FTS_FUNC_EXIT();
return 0;
}
int fts_read(u8 *cmd, u32 cmdlen, u8 *data, u32 datalen)
{
int ret = 0;
if (ts_data->bus_type == BUS_TYPE_I2C)
ret = fts_i2c_read(cmd, cmdlen, data, datalen);
else
ret = fts_spi_read(cmd, cmdlen, data, datalen);
return ret;
}
int fts_write(u8 *writebuf, u32 writelen)
{
int ret = 0;
if (ts_data->bus_type == BUS_TYPE_I2C)
ret = fts_i2c_write(writebuf, writelen);
else
ret = fts_spi_write(writebuf, writelen);
return ret;
}
int fts_read_reg(u8 addr, u8 *value)
{
return fts_read(&addr, 1, value, 1);
}
int fts_write_reg(u8 addr, u8 value)
{
u8 buf[2] = { 0 };
buf[0] = addr;
buf[1] = value;
return fts_write(buf, sizeof(buf));
}
int fts_bus_init(struct fts_ts_data *_ts_data)
{
ts_data = _ts_data;
if (ts_data->bus_type == BUS_TYPE_I2C)
return fts_i2c_init(ts_data);
return fts_spi_init(ts_data);
}
int fts_bus_exit(struct fts_ts_data *ts_data)
{
if (ts_data->bus_type == BUS_TYPE_I2C)
return fts_i2c_exit(ts_data);
return fts_spi_exit(ts_data);
}