ipa-kernel-tests: Add HDR insertion for distributed table

The header table is now distributed dynamically between
SRAM and DDR. Adding new tests validating this feature.

Change-Id: Id5312c6f5d36659b0232310674bda3947647a4fc
Signed-off-by: Ilia Lin <ilialin@codeaurora.org>
This commit is contained in:
Ilia Lin
2021-05-24 10:21:11 +03:00
parent 87909f14fd
commit b9215fe424
3 changed files with 680 additions and 1 deletions

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
* Copyright (c) 2017-2018,2021 The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@@ -34,6 +34,10 @@
#include "hton.h" // for htonl
#include "TestsUtils.h"
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#define IPV4_DST_ADDR_OFFSET (16)
@@ -122,6 +126,30 @@ public:
return true;
} // Teardown()
unsigned GetHdrSramSize()
{
int fd;
struct ipa_test_mem_partition mem_part;
fd = open("/dev/ipa_test", O_RDONLY);
if (fd < 0) {
printf("Failed opening %s. errno %d: %s\n", "/dev/ipa_test",
errno, strerror(errno));
return 0;
}
if (ioctl(fd, IPA_TEST_IOC_GET_MEM_PART, &mem_part) < 0) {
printf("Failed ioctl IPA_TEST_IOC_GET_MEM_PART. errno %d: %s\n",
errno, strerror(errno));
close(fd);
return 0;
}
close(fd);
return mem_part.apps_hdr_size;
}
~IPAHeaderInsertionTestFixture() {}
static RoutingDriverWrapper m_Routing;
@@ -867,9 +895,538 @@ private:
size_t m_nHeadertoAddSize;
};
class IPAHeaderInsertionTest006: public IPAHeaderInsertionTestFixture {
public:
IPAHeaderInsertionTest006() {
m_name = "IPAHeaderInsertionTest006";
m_description =
"Header Insertion Test 006 - Test header distriburion between SRAM and DDR\
- fill SRAM and some DDR, use DDR header";
this->m_runInRegression = true;
Register(*this);
uint8_t aRMNetHeader[6] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06};
m_nHeadertoAddSize = sizeof(aRMNetHeader);
memcpy(m_aHeadertoAdd, aRMNetHeader, m_nHeadertoAddSize);
m_minIPAHwType = IPA_HW_v5_0;
// The bin size is 8
// We are going to add number of headers to occupy twice the size of the SRAM buffer
m_InitialHeadersNum = GetHdrSramSize() / 8 * 2;
m_HeadersNumToDelete = 0;
m_HeadersNumToAddAgain = 0;
}
virtual bool AddRules() {
bool bRetVal = true;
m_eIP = IPA_IP_v4;
struct ipa_ioc_add_hdr *pHeaderDescriptor = NULL;
struct ipa_ioc_del_hdr *pDelHeaderDescriptor = NULL;
memset(&m_RetHeader, 0, sizeof(m_RetHeader));
LOG_MSG_STACK("Entering Function");
if (m_InitialHeadersNum <= 0)
{
LOG_MSG_ERROR("Initial headers number is set to 0!\n");
bRetVal = false;
goto bail;
}
pHeaderDescriptor = (struct ipa_ioc_add_hdr *) calloc(1,
sizeof(struct ipa_ioc_add_hdr) + 1 * sizeof(struct ipa_hdr_add));
if (m_HeadersNumToDelete > 0)
pDelHeaderDescriptor = (struct ipa_ioc_del_hdr *)calloc(1,
sizeof(struct ipa_ioc_del_hdr) + m_HeadersNumToDelete * sizeof(struct ipa_hdr_del));
if (!pHeaderDescriptor || (m_HeadersNumToDelete > 0 && !pDelHeaderDescriptor))
{
LOG_MSG_ERROR("calloc failed to allocate ipa_ioc_add_hdr or ipa_ioc_del_hdr");
bRetVal = false;
goto bail;
}
// Add bunch of headers to SRAM and DDR
pHeaderDescriptor->commit = true;
pHeaderDescriptor->num_hdrs = 1;
memcpy(pHeaderDescriptor->hdr[0].hdr, m_aHeadertoAdd, m_nHeadertoAddSize);
pHeaderDescriptor->hdr[0].hdr_len = m_nHeadertoAddSize;
pHeaderDescriptor->hdr[0].hdr_hdl = -1; //Return Value
pHeaderDescriptor->hdr[0].is_partial = false;
pHeaderDescriptor->hdr[0].status = -1; // Return Parameter
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
for (int i = 0; i < m_InitialHeadersNum; i++)
{
LOG_MSG_DEBUG("%s::%s iter=%d\n", typeid(this).name(), __func__, i);
snprintf(pHeaderDescriptor->hdr[0].name, sizeof(pHeaderDescriptor->hdr[0].name), "IEEE802_3_%03d", i);
if (!m_HeaderInsertion.AddHeader(pHeaderDescriptor))
{
LOG_MSG_ERROR("m_HeaderInsertion.AddHeader(pHeaderDescriptor) Failed on %d iteration.\n", i);
bRetVal = false;
goto bail;
}
// Store header descriptors to delete
if (m_HeadersNumToDelete > 0 && i < m_HeadersNumToDelete) {
pDelHeaderDescriptor->hdl[i].hdl = pHeaderDescriptor->hdr[0].hdr_hdl;
}
}
strlcpy(m_RetHeader.name, pHeaderDescriptor->hdr[0].name, sizeof(m_RetHeader.name));
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
if (m_HeadersNumToDelete > 0)
{
// Delete few headers from SRAM
pDelHeaderDescriptor->commit = true;
pDelHeaderDescriptor->num_hdls = m_HeadersNumToDelete;
for (int i = 0; i < m_HeadersNumToDelete; i++)
pDelHeaderDescriptor->hdl[i].status = -1; // Return Parameter
if (!m_HeaderInsertion.DeleteHeader(pDelHeaderDescriptor))
{
LOG_MSG_ERROR("m_HeaderInsertion.DeleteHeader(pDelHeaderDescriptor) Failed");
bRetVal = false;
goto bail;
}
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
}
if (m_HeadersNumToAddAgain > 0)
{
// Add few new headers to SRAM
pHeaderDescriptor->commit = true;
pHeaderDescriptor->num_hdrs = 1;
memcpy(pHeaderDescriptor->hdr[0].hdr, m_aHeadertoAdd, m_nHeadertoAddSize);
pHeaderDescriptor->hdr[0].hdr_len = m_nHeadertoAddSize;
pHeaderDescriptor->hdr[0].hdr_hdl = -1; //Return Value
pHeaderDescriptor->hdr[0].is_partial = false;
pHeaderDescriptor->hdr[0].status = -1; // Return Parameter
for (int i = 0; i < m_HeadersNumToAddAgain; i++) {
LOG_MSG_DEBUG("%s::%s iter=%d\n", typeid(this).name(), __func__, i);
snprintf(pHeaderDescriptor->hdr[0].name, sizeof(pHeaderDescriptor->hdr[0].name), "IEEE802_3_%03d_2", i);
if (!m_HeaderInsertion.AddHeader(pHeaderDescriptor))
{
LOG_MSG_ERROR("m_HeaderInsertion.AddHeader(pHeaderDescriptor) Failed on %d iteration.\n", i);
bRetVal = false;
goto bail;
}
}
strlcpy(m_RetHeader.name, pHeaderDescriptor->hdr[0].name, sizeof(m_RetHeader.name));
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
}
// Use last added header for traffic
if (!m_HeaderInsertion.GetHeaderHandle(&m_RetHeader))
{
LOG_MSG_ERROR(" Failed");
bRetVal = false;
goto bail;
}
bRetVal = CreateFilteringAndRouting();
bail:
Free(pHeaderDescriptor);
if (pDelHeaderDescriptor)
Free(pDelHeaderDescriptor);
LOG_MSG_STACK("Leaving %s (Returning %s)", __func__, bRetVal ? "True" : "False");
return bRetVal;
} // AddRules()
virtual bool CreateFilteringAndRouting() {
uint32_t nRTTableHdl=0;
const char bypass0[20] = "Bypass0";
struct ipa_ioc_get_rt_tbl sRoutingTable;
struct ipa_flt_rule_add sFilterRuleEntry;
IPAFilteringTable cFilterTable;
memset(&sRoutingTable, 0, sizeof(sRoutingTable));
// Create RT table
if (!CreateBypassRoutingTable(&m_Routing, m_eIP, bypass0, IPA_CLIENT_TEST2_CONS,
m_RetHeader.hdl,&nRTTableHdl)) {
LOG_MSG_ERROR("CreateBypassRoutingTable Failed\n");
return false;
}
LOG_MSG_INFO("CreateBypassRoutingTable completed successfully");
sRoutingTable.ip = m_eIP;
strlcpy(sRoutingTable.name, bypass0, sizeof(sRoutingTable.name));
if (!m_Routing.GetRoutingTable(&sRoutingTable)) {
LOG_MSG_ERROR("m_routing.GetRoutingTable(&sRoutingTable=0x%p) Failed.",
&sRoutingTable);
return false;
}
// Creating Filtering Rules
cFilterTable.Init(m_eIP, IPA_CLIENT_TEST_PROD, false, 1);
LOG_MSG_INFO("Creation of filtering table completed successfully");
// Configuring Filtering Rule No.1
cFilterTable.GeneratePresetRule(0, sFilterRuleEntry);
sFilterRuleEntry.at_rear = true;
sFilterRuleEntry.flt_rule_hdl = -1; // return Value
sFilterRuleEntry.status = -1; // return value
sFilterRuleEntry.rule.action = IPA_PASS_TO_ROUTING;
sFilterRuleEntry.rule.rt_tbl_hdl = nRTTableHdl; //put here the handle corresponding to Routing Rule 1
if (((uint8_t)-1 == cFilterTable.AddRuleToTable(sFilterRuleEntry)) ||
!m_Filtering.AddFilteringRule(cFilterTable.GetFilteringTable()))
{
LOG_MSG_ERROR ("Adding Rule (0) to Filtering block Failed.");
return false;
}
else
{
LOG_MSG_DEBUG("flt rule hdl0=0x%x, status=0x%x\n",
cFilterTable.ReadRuleFromTable(0)->flt_rule_hdl,
cFilterTable.ReadRuleFromTable(0)->status);
}
return true;
}
virtual bool ModifyPackets() {
return true;
}
virtual bool TestLogic() {
memset(m_aExpectedBuffer, 0, sizeof(m_aExpectedBuffer));
m_aExpectedBufSize = 0;
memcpy(m_aExpectedBuffer, m_aHeadertoAdd, m_nHeadertoAddSize);
memcpy(m_aExpectedBuffer+m_nHeadertoAddSize,m_aBuffer,m_uBufferSize);
m_aExpectedBufSize = m_nHeadertoAddSize + m_uBufferSize;
if (!SendReceiveAndCompare(&m_producer, m_aBuffer, m_uBufferSize,
&m_Consumer1, m_aExpectedBuffer, m_aExpectedBufSize)) {
LOG_MSG_ERROR("SendReceiveAndCompare failed.");
return false;
}
return true;
}
protected:
struct ipa_ioc_get_hdr m_RetHeader;
int m_InitialHeadersNum;
int m_HeadersNumToDelete;
int m_HeadersNumToAddAgain;
private:
uint8_t m_aExpectedBuffer[BUFF_MAX_SIZE]; // Input file / IP packet
size_t m_aExpectedBufSize;
uint8_t m_aHeadertoAdd[MAX_HEADER_SIZE];
size_t m_nHeadertoAddSize;
int ret;
};
class IPAHeaderInsertionTest007: public IPAHeaderInsertionTest006 {
public:
IPAHeaderInsertionTest007() {
m_name = "IPAHeaderInsertionTest007";
m_description =
"Header Insertion Test 007 - Test header distriburion between SRAM and DDR\
- fill SRAM and some DDR, free some SRAM, use DDR header";
// We will delete half of the headers in the SRAM,
// which is quarter of the total initial headers number
m_HeadersNumToDelete = m_InitialHeadersNum / 4;
m_HeadersNumToAddAgain = 0;
}
};
class IPAHeaderInsertionTest008: public IPAHeaderInsertionTest006 {
public:
IPAHeaderInsertionTest008() {
m_name = "IPAHeaderInsertionTest008";
m_description =
"Header Insertion Test 008 - Test header distriburion between SRAM and DDR\
- fill SRAM and some DDR, free some SRAM, add few new SRAM headers, \
use last SRAM header";
// We will delete half of the headers in the SRAM,
// which is quarter of the total initial headers number
m_HeadersNumToDelete = m_InitialHeadersNum / 4;
// We will add again half of the number of headers we deleted
m_HeadersNumToAddAgain = m_HeadersNumToDelete / 2;
}
};
class IPAHeaderInsertionTest009: public IPAHeaderInsertionTest006 {
public:
IPAHeaderInsertionTest009() {
m_name = "IPAHeaderInsertionTest009";
m_description =
"Header Insertion Test 009 - Test header distriburion between SRAM and DDR \
- fill SRAM and some DDR, free some SRAM and DDR, \
add new SRAM and DDR headers, \
use last added DDR header";
// We will delete all the headers in SRAM and half of the headers in the DDR,
// which is 3/4 of the total initial headers number
m_HeadersNumToDelete = m_InitialHeadersNum - (m_InitialHeadersNum / 4);
// We will add again one less header than deleted
m_HeadersNumToAddAgain = m_InitialHeadersNum - m_HeadersNumToDelete - 1;
}
};
class IPAHeaderInsertionTest010: public IPAHeaderInsertionTestFixture {
public:
IPAHeaderInsertionTest010() :
m_aExpectedBufSize(BUFF_MAX_SIZE),
m_nHeadertoAddSize1(0),
m_nHeadertoAddSize2(0)
{
m_name = "IPAHeaderInsertionTest010";
m_description =
"Header Insertion Test 010 - Test header distriburion between SRAM and DDR\
- fill SRAM and some DDR, use one SRAM and one DDR header";
m_minIPAHwType = IPA_HW_v5_0;
Register(*this);
uint8_t aIEEE802_3Header1[22] = { 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6,
0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0x00, 0x46, 0xAE, 0xAF, 0xB0,
0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6 };
uint8_t aIEEE802_3Header2[22] = { 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6,
0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0x00, 0x47, 0xAE, 0xAF, 0xB0,
0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6 };
m_nHeadertoAddSize1 = sizeof(aIEEE802_3Header1);
memcpy(m_aHeadertoAdd1, aIEEE802_3Header1, m_nHeadertoAddSize1);
m_nHeadertoAddSize2 = sizeof(aIEEE802_3Header2);
memcpy(m_aHeadertoAdd2, aIEEE802_3Header2, m_nHeadertoAddSize2);
// The packet size is 22, therefore the bin size is 24
// We are going to add number of headers to occupy twice the size of the SRAM buffer
m_InitialHeadersNum = GetHdrSramSize() / 24 * 2;
}
virtual bool AddRules() {
m_eIP = IPA_IP_v4;
const char aBypass1[20] = "Bypass1";
const char aBypass2[20] = "Bypass2";
uint32_t nTableHdl01, nTableHdl02;
bool bRetVal = true;
IPAFilteringTable cFilterTable0;
struct ipa_flt_rule_add sFilterRuleEntry;
struct ipa_ioc_add_hdr *pHeaderDescriptor = NULL;
LOG_MSG_STACK("Entering Function");
if (m_InitialHeadersNum <= 0)
{
LOG_MSG_ERROR("Initial headers number is set to 0!\n");
bRetVal = false;
goto bail;
}
memset(&sFilterRuleEntry, 0, sizeof(sFilterRuleEntry));
memset(&m_RetHeader1, 0, sizeof(m_RetHeader1));
memset(&m_RetHeader2, 0, sizeof(m_RetHeader2));
pHeaderDescriptor = (struct ipa_ioc_add_hdr *) calloc(1,
sizeof(struct ipa_ioc_add_hdr) + 1 * sizeof(struct ipa_hdr_add));
if (!pHeaderDescriptor)
{
LOG_MSG_ERROR("calloc failed to allocate ipa_ioc_add_hdr");
bRetVal = false;
goto bail;
}
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
// Add one header to SRAM
pHeaderDescriptor->commit = true;
pHeaderDescriptor->num_hdrs = 1;
pHeaderDescriptor->hdr[0].status = -1; // Return Parameter
pHeaderDescriptor->hdr[0].hdr_hdl = -1; //Return Value
pHeaderDescriptor->hdr[0].is_partial = false;
memcpy(pHeaderDescriptor->hdr[0].hdr, m_aHeadertoAdd1, m_nHeadertoAddSize1);
pHeaderDescriptor->hdr[0].hdr_len = m_nHeadertoAddSize1;
strlcpy(pHeaderDescriptor->hdr[0].name, "IEEE802_3_SRAM", sizeof(pHeaderDescriptor->hdr[0].name));
strlcpy(m_RetHeader1.name, pHeaderDescriptor->hdr[0].name, sizeof(m_RetHeader1.name));
if (!m_HeaderInsertion.AddHeader(pHeaderDescriptor))
{
LOG_MSG_ERROR("m_HeaderInsertion.AddHeader(pHeaderDescriptor) Failed\n");
bRetVal = false;
goto bail;
}
// Add bunch of headers to SRAM and DDR
for (int i = 1; i < m_InitialHeadersNum; i++)
{
LOG_MSG_DEBUG("%s::%s iter=%d\n", typeid(this).name(), __func__, i);
memcpy(pHeaderDescriptor->hdr[0].hdr, m_aHeadertoAdd2, m_nHeadertoAddSize2);
pHeaderDescriptor->hdr[0].hdr_len = m_nHeadertoAddSize2;
snprintf(pHeaderDescriptor->hdr[0].name, sizeof(pHeaderDescriptor->hdr[0].name),
"IEEE802_3_%03d", i);
if (!m_HeaderInsertion.AddHeader(pHeaderDescriptor))
{
LOG_MSG_ERROR("m_HeaderInsertion.AddHeader(pHeaderDescriptor) Failed on %d iteration.\n", i);
bRetVal = false;
goto bail;
}
}
strlcpy(m_RetHeader2.name, pHeaderDescriptor->hdr[0].name, sizeof(m_RetHeader2.name));
fflush(stderr);
fflush(stdout);
ret = system("cat /sys/kernel/debug/ipa/hdr");
if (!m_HeaderInsertion.GetHeaderHandle(&m_RetHeader1))
{
LOG_MSG_ERROR(" Failed");
bRetVal = false;
goto bail;
}
LOG_MSG_DEBUG("Received Header1 Handle = 0x%x", m_RetHeader1.hdl);
if (!m_HeaderInsertion.GetHeaderHandle(&m_RetHeader2))
{
LOG_MSG_ERROR(" Failed");
bRetVal = false;
goto bail;
}
LOG_MSG_DEBUG("Received Header2 Handle = 0x%x", m_RetHeader2.hdl);
if (!CreateBypassRoutingTable(&m_Routing, m_eIP, aBypass1, IPA_CLIENT_TEST3_CONS,
m_RetHeader1.hdl, &nTableHdl01)) {
LOG_MSG_ERROR("CreateBypassRoutingTable Failed\n");
bRetVal = false;
goto bail;
}
if (!CreateBypassRoutingTable(&m_Routing, m_eIP, aBypass2, IPA_CLIENT_TEST4_CONS,
m_RetHeader2.hdl, &nTableHdl02)) {
LOG_MSG_ERROR("CreateBypassRoutingTable Failed\n");
bRetVal = false;
goto bail;
}
LOG_MSG_INFO("Creation of two bypass routing tables completed successfully TblHdl1=0x%x, TblHdl2=0x%x",
nTableHdl01, nTableHdl02);
// Creating Filtering Rules
cFilterTable0.Init(m_eIP, IPA_CLIENT_TEST_PROD, false, 2);
LOG_MSG_INFO("Creation of filtering table completed successfully");
// Configuring common Filtering fields
cFilterTable0.GeneratePresetRule(1, sFilterRuleEntry);
sFilterRuleEntry.at_rear = true;
sFilterRuleEntry.rule.action = IPA_PASS_TO_ROUTING;
sFilterRuleEntry.rule.attrib.attrib_mask = IPA_FLT_DST_ADDR; // Destination IP Based Filtering
sFilterRuleEntry.rule.attrib.u.v4.dst_addr_mask = 0xFF0000FF; // Mask
// Configuring Filtering Rule No.1
sFilterRuleEntry.flt_rule_hdl = -1; // return Value
sFilterRuleEntry.status = -1; // return Value
sFilterRuleEntry.rule.rt_tbl_hdl = nTableHdl01; //put here the handle corresponding to Routing Rule 1
sFilterRuleEntry.rule.attrib.u.v4.dst_addr = 0xC0A80101; // Filter DST_IP == 192.168.1.1.
if ((uint8_t)-1 == cFilterTable0.AddRuleToTable(sFilterRuleEntry))
{
LOG_MSG_ERROR ("Adding Rule(1) to Filtering table Failed.");
bRetVal = false;
goto bail;
}
// Configuring Filtering Rule No.2
sFilterRuleEntry.flt_rule_hdl = -1; // return Value
sFilterRuleEntry.status = -1; // return value
sFilterRuleEntry.rule.rt_tbl_hdl = nTableHdl02; //put here the handle corresponding to Routing Rule 2
sFilterRuleEntry.rule.attrib.u.v4.dst_addr = 0xC0A80102; // Filter DST_IP == 192.168.1.2.
if ((uint8_t)-1 == cFilterTable0.AddRuleToTable(sFilterRuleEntry))
{
LOG_MSG_ERROR ("Adding Rule(2) to Filtering table Failed.");
bRetVal = false;
goto bail;
}
if (!m_Filtering.AddFilteringRule(cFilterTable0.GetFilteringTable())) {
LOG_MSG_ERROR ("Failed to commit Filtering rules");
bRetVal = false;
goto bail;
}
LOG_MSG_DEBUG("flt rule hdl0=0x%x, status=0x%x\n",
cFilterTable0.ReadRuleFromTable(0)->flt_rule_hdl,
cFilterTable0.ReadRuleFromTable(0)->status);
LOG_MSG_DEBUG("flt rule hdl0=0x%x, status=0x%x\n",
cFilterTable0.ReadRuleFromTable(1)->flt_rule_hdl,
cFilterTable0.ReadRuleFromTable(1)->status);
bail:
Free(pHeaderDescriptor);
LOG_MSG_STACK("Leaving Function (Returning %s)", bRetVal ? "True" : "False");
return bRetVal;
} // AddRules()
virtual bool ModifyPackets() {
// This test doesn't modify the original IP Packet.
return true;
} // ModifyPacktes ()
virtual bool TestLogic() {
bool bRetVal = true;
m_aExpectedBufSize = 0;
uint32_t nIPv4DSTAddr;
LOG_MSG_STACK("Entering Function");
//Packet No. 1
memset(m_aExpectedBuffer, 0, sizeof(m_aExpectedBuffer));
nIPv4DSTAddr = ntohl(0xC0A80101); //192.168.1.1
memcpy(&m_aBuffer[IPV4_DST_ADDR_OFFSET], &nIPv4DSTAddr, sizeof(nIPv4DSTAddr));
memcpy(m_aExpectedBuffer, m_aHeadertoAdd1, m_nHeadertoAddSize1);
memcpy(m_aExpectedBuffer+m_nHeadertoAddSize1,m_aBuffer,m_uBufferSize);
m_aExpectedBufSize = m_nHeadertoAddSize1 + m_uBufferSize;
if (!SendReceiveAndCompare(&m_producer, m_aBuffer, m_uBufferSize,
&m_Consumer2, m_aExpectedBuffer, m_aExpectedBufSize))
{
LOG_MSG_ERROR("SendReceiveAndCompare failed.");
bRetVal=false;
}
//Packet No. 2
memset(m_aExpectedBuffer, 0, sizeof(m_aExpectedBuffer));
nIPv4DSTAddr = ntohl(0xC0A80102); //192.168.1.2
memcpy (&m_aBuffer[IPV4_DST_ADDR_OFFSET], &nIPv4DSTAddr, sizeof(nIPv4DSTAddr));
memcpy(m_aExpectedBuffer, m_aHeadertoAdd2, m_nHeadertoAddSize2);
memcpy(m_aExpectedBuffer+m_nHeadertoAddSize2, m_aBuffer, m_uBufferSize);
m_aExpectedBufSize = m_nHeadertoAddSize2 + m_uBufferSize;
if (!SendReceiveAndCompare(&m_producer, m_aBuffer, m_uBufferSize,
&m_Consumer3, m_aExpectedBuffer, m_aExpectedBufSize))
{
LOG_MSG_ERROR("SendReceiveAndCompare failed.");
bRetVal=false;
}
LOG_MSG_STACK("Leaving Function (Returning %s)",bRetVal?"True":"False");
return bRetVal;
}
protected:
struct ipa_ioc_get_hdr m_RetHeader1, m_RetHeader2;
int m_InitialHeadersNum;
private:
uint8_t m_aExpectedBuffer[BUFF_MAX_SIZE]; // Input file / IP packet
size_t m_aExpectedBufSize;
uint8_t m_aHeadertoAdd1[MAX_HEADER_SIZE], m_aHeadertoAdd2[MAX_HEADER_SIZE];
size_t m_nHeadertoAddSize1, m_nHeadertoAddSize2;
int ret;
};
static IPAHeaderInsertionTest001 ipaHeaderInsertionTest001;
static IPAHeaderInsertionTest002 ipaHeaderInsertionTest002;
static IPAHeaderInsertionTest003 ipaHeaderInsertionTest003;
static IPAHeaderInsertionTest004 ipaHeaderInsertionTest004;
static IPAHeaderInsertionTest005 ipaHeaderInsertionTest005;
static IPAHeaderInsertionTest006 ipaHeaderInsertionTest006;
static IPAHeaderInsertionTest007 ipaHeaderInsertionTest007;
static IPAHeaderInsertionTest008 ipaHeaderInsertionTest008;
static IPAHeaderInsertionTest009 ipaHeaderInsertionTest009;
static IPAHeaderInsertionTest010 ipaHeaderInsertionTest010;