video: driver: Add support for kalama/iris3 platform

Add the required config and platform files to enable
kalama platform with iris3 VPU.

Change-Id: Ia65d2212b946d0d37fc99e30e25fe408882bdec3
Signed-off-by: Mihir Ganu <quic_mganu@quicinc.com>
此提交包含在:
Mihir Ganu
2021-11-16 21:08:23 -08:00
父節點 767c8ad13d
當前提交 9456cc40fb
共有 13 個檔案被更改,包括 6035 行新增34 行删除

查看文件

@@ -0,0 +1,675 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include "hfi_property.h"
#include "hfi_buffer_iris3.h"
#include "msm_vidc_buffer_iris3.h"
#include "msm_vidc_buffer.h"
#include "msm_vidc_inst.h"
#include "msm_vidc_core.h"
#include "msm_vidc_platform.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_debug.h"
#include "msm_media_info.h"
#include "msm_vidc_control.h"
static u32 msm_vidc_decoder_bin_size_iris3(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
u32 size = 0;
u32 width, height, num_vpp_pipes;
struct v4l2_format *f;
bool is_interlaced;
u32 vpp_delay;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
if (inst->decode_vpp_delay.enable)
vpp_delay = inst->decode_vpp_delay.size;
else
vpp_delay = DEFAULT_BSE_VPP_DELAY;
if (inst->capabilities->cap[CODED_FRAMES].value ==
CODED_FRAMES_PROGRESSIVE)
is_interlaced = false;
else
is_interlaced = true;
f = &inst->fmts[INPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_BIN_H264D(size, width, height,
is_interlaced, vpp_delay, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_BIN_H265D(size, width, height,
0, vpp_delay, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_VP9)
HFI_BUFFER_BIN_VP9D(size, width, height,
0, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_decoder_comv_size_iris3(struct msm_vidc_inst* inst)
{
u32 size = 0;
u32 width, height, out_min_count, vpp_delay;
struct v4l2_format* f;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
f = &inst->fmts[INPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (inst->decode_vpp_delay.enable)
vpp_delay = inst->decode_vpp_delay.size;
else
vpp_delay = DEFAULT_BSE_VPP_DELAY;
out_min_count = inst->buffers.output.min_count;
out_min_count = max(vpp_delay + 1, out_min_count);
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_COMV_H264D(size, width, height, out_min_count);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_COMV_H265D(size, width, height, out_min_count);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_decoder_non_comv_size_iris3(struct msm_vidc_inst* inst)
{
u32 size = 0;
u32 width, height, num_vpp_pipes;
struct msm_vidc_core* core;
struct v4l2_format* f;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid core capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
f = &inst->fmts[INPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_NON_COMV_H264D(size, width, height, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_NON_COMV_H265D(size, width, height, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_decoder_line_size_iris3(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
u32 size = 0;
u32 width, height, out_min_count, num_vpp_pipes, vpp_delay;
struct v4l2_format *f;
bool is_opb;
u32 color_fmt;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
color_fmt = v4l2_colorformat_to_driver(
inst->fmts[OUTPUT_PORT].fmt.pix_mp.pixelformat, __func__);
if (is_linear_colorformat(color_fmt))
is_opb = true;
else
is_opb = false;
/*
* assume worst case, since color format is unknown at this
* time
*/
is_opb = true;
if (inst->decode_vpp_delay.enable)
vpp_delay = inst->decode_vpp_delay.size;
else
vpp_delay = DEFAULT_BSE_VPP_DELAY;
f = &inst->fmts[INPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
out_min_count = inst->buffers.output.min_count;
out_min_count = max(vpp_delay + 1, out_min_count);
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_LINE_H264D(size, width, height, is_opb,
num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_LINE_H265D(size, width, height, is_opb,
num_vpp_pipes);
else if (inst->codec == MSM_VIDC_VP9)
HFI_BUFFER_LINE_VP9D(size, width, height, out_min_count,
is_opb, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_decoder_persist_size_iris3(struct msm_vidc_inst *inst)
{
u32 size = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_PERSIST_H264D(size);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_PERSIST_H265D(size);
else if (inst->codec == MSM_VIDC_VP9)
HFI_BUFFER_PERSIST_VP9D(size);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_decoder_dpb_size_iris3(struct msm_vidc_inst *inst)
{
u32 size = 0;
u32 color_fmt, v4l2_fmt;
u32 width, height;
struct v4l2_format *f;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
color_fmt = inst->capabilities->cap[PIX_FMTS].value;
if (!is_linear_colorformat(color_fmt))
return size;
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (color_fmt == MSM_VIDC_FMT_NV12) {
v4l2_fmt = V4L2_PIX_FMT_VIDC_NV12C;
HFI_NV12_UBWC_IL_CALC_BUF_SIZE_V2(size, width, height,
VIDEO_Y_STRIDE_BYTES(v4l2_fmt, width), VIDEO_Y_SCANLINES(v4l2_fmt, height),
VIDEO_UV_STRIDE_BYTES(v4l2_fmt, width), VIDEO_UV_SCANLINES(v4l2_fmt, height),
VIDEO_Y_META_STRIDE(v4l2_fmt, width), VIDEO_Y_META_SCANLINES(v4l2_fmt,
height),
VIDEO_UV_META_STRIDE(v4l2_fmt, width), VIDEO_UV_META_SCANLINES(v4l2_fmt,
height));
} else if (color_fmt == MSM_VIDC_FMT_P010) {
v4l2_fmt = V4L2_PIX_FMT_VIDC_TP10C;
HFI_YUV420_TP10_UBWC_CALC_BUF_SIZE(size,
VIDEO_Y_STRIDE_BYTES(v4l2_fmt, width), VIDEO_Y_SCANLINES(v4l2_fmt, height),
VIDEO_UV_STRIDE_BYTES(v4l2_fmt, width), VIDEO_UV_SCANLINES(v4l2_fmt, height),
VIDEO_Y_META_STRIDE(v4l2_fmt, width), VIDEO_Y_META_SCANLINES(v4l2_fmt,
height),
VIDEO_UV_META_STRIDE(v4l2_fmt, width), VIDEO_UV_META_SCANLINES(v4l2_fmt,
height));
}
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
/* encoder internal buffers */
static u32 msm_vidc_encoder_bin_size_iris3(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
u32 size = 0;
u32 width, height, num_vpp_pipes, stage;
struct v4l2_format *f;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid core capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
stage = inst->capabilities->cap[STAGE].value;
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_BIN_H264E(size, inst->hfi_rc_type, width,
height, stage, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_BIN_H265E(size, inst->hfi_rc_type, width,
height, stage, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_get_recon_buf_count(struct msm_vidc_inst *inst)
{
u32 num_buf_recon = 0;
s32 n_bframe, ltr_count, hp_layers = 0, hb_layers = 0;
bool is_hybrid_hp = false;
u32 hfi_codec = 0;
n_bframe = inst->capabilities->cap[B_FRAME].value;
ltr_count = inst->capabilities->cap[LTR_COUNT].value;
if (inst->hfi_layer_type == HFI_HIER_B) {
hb_layers = inst->capabilities->cap[ENH_LAYER_COUNT].value + 1;
} else {
hp_layers = inst->capabilities->cap[ENH_LAYER_COUNT].value + 1;
if (inst->hfi_layer_type == HFI_HIER_P_HYBRID_LTR)
is_hybrid_hp = true;
}
if (inst->codec == MSM_VIDC_H264)
hfi_codec = HFI_CODEC_ENCODE_AVC;
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
hfi_codec = HFI_CODEC_ENCODE_HEVC;
HFI_IRIS3_ENC_RECON_BUF_COUNT(num_buf_recon, n_bframe, ltr_count,
hp_layers, hb_layers, is_hybrid_hp, hfi_codec);
return num_buf_recon;
}
static u32 msm_vidc_encoder_comv_size_iris3(struct msm_vidc_inst* inst)
{
u32 size = 0;
u32 width, height, num_recon = 0;
struct v4l2_format* f;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
num_recon = msm_vidc_get_recon_buf_count(inst);
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_COMV_H264E(size, width, height, num_recon);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_COMV_H265E(size, width, height, num_recon);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_encoder_non_comv_size_iris3(struct msm_vidc_inst* inst)
{
struct msm_vidc_core* core;
u32 size = 0;
u32 width, height, num_vpp_pipes;
struct v4l2_format* f;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid core capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_NON_COMV_H264E(size, width, height, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_NON_COMV_H265E(size, width, height, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_encoder_line_size_iris3(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
u32 size = 0;
u32 width, height, pixfmt, num_vpp_pipes;
bool is_tenbit = false;
struct v4l2_format *f;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return size;
}
core = inst->core;
if (!core->capabilities || !inst->capabilities) {
i_vpr_e(inst, "%s: invalid capabilities\n", __func__);
return size;
}
num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
pixfmt = inst->capabilities->cap[PIX_FMTS].value;
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
is_tenbit = (pixfmt == MSM_VIDC_FMT_P010 || pixfmt == MSM_VIDC_FMT_TP10C);
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_LINE_H264E(size, width, height, is_tenbit, num_vpp_pipes);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_LINE_H265E(size, width, height, is_tenbit, num_vpp_pipes);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_encoder_dpb_size_iris3(struct msm_vidc_inst *inst)
{
u32 size = 0;
u32 width, height, pixfmt;
struct v4l2_format *f;
bool is_tenbit;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
f = &inst->fmts[OUTPUT_PORT];
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
pixfmt = inst->capabilities->cap[PIX_FMTS].value;
is_tenbit = (pixfmt == MSM_VIDC_FMT_P010 || pixfmt == MSM_VIDC_FMT_TP10C);
if (inst->codec == MSM_VIDC_H264)
HFI_BUFFER_DPB_H264E(size, width, height);
else if (inst->codec == MSM_VIDC_HEVC || inst->codec == MSM_VIDC_HEIC)
HFI_BUFFER_DPB_H265E(size, width, height, is_tenbit);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_encoder_arp_size_iris3(struct msm_vidc_inst *inst)
{
u32 size = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
HFI_BUFFER_ARP_ENC(size);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
static u32 msm_vidc_encoder_vpss_size_iris3(struct msm_vidc_inst* inst)
{
u32 size = 0;
bool ds_enable = false, is_tenbit = false, blur = false;
u32 rotation_val = HFI_ROTATION_NONE;
u32 width, height, driver_colorfmt;
struct v4l2_format* f;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
ds_enable = is_scaling_enabled(inst);
msm_vidc_v4l2_to_hfi_enum(inst, ROTATION, &rotation_val);
f = &inst->fmts[OUTPUT_PORT];
if (is_rotation_90_or_270(inst)) {
/*
* output width and height are rotated,
* so unrotate them to use as arguments to
* HFI_BUFFER_VPSS_ENC.
*/
width = f->fmt.pix_mp.height;
height = f->fmt.pix_mp.width;
} else {
width = f->fmt.pix_mp.width;
height = f->fmt.pix_mp.height;
}
f = &inst->fmts[INPUT_PORT];
driver_colorfmt = v4l2_colorformat_to_driver(
f->fmt.pix_mp.pixelformat, __func__);
is_tenbit = is_10bit_colorformat(driver_colorfmt);
if (inst->capabilities->cap[BLUR_TYPES].value != VIDC_BLUR_NONE)
blur = true;
HFI_BUFFER_VPSS_ENC(size, width, height, ds_enable, blur, is_tenbit);
i_vpr_l(inst, "%s: size %d\n", __func__, size);
return size;
}
struct msm_vidc_buf_type_handle {
enum msm_vidc_buffer_type type;
u32 (*handle)(struct msm_vidc_inst *inst);
};
int msm_buffer_size_iris3(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int i;
u32 size = 0, buf_type_handle_size = 0;
const struct msm_vidc_buf_type_handle *buf_type_handle_arr = NULL;
static const struct msm_vidc_buf_type_handle dec_buf_type_handle[] = {
{MSM_VIDC_BUF_INPUT, msm_vidc_decoder_input_size },
{MSM_VIDC_BUF_OUTPUT, msm_vidc_decoder_output_size },
{MSM_VIDC_BUF_INPUT_META, msm_vidc_decoder_input_meta_size },
{MSM_VIDC_BUF_OUTPUT_META, msm_vidc_decoder_output_meta_size },
{MSM_VIDC_BUF_BIN, msm_vidc_decoder_bin_size_iris3 },
{MSM_VIDC_BUF_COMV, msm_vidc_decoder_comv_size_iris3 },
{MSM_VIDC_BUF_NON_COMV, msm_vidc_decoder_non_comv_size_iris3 },
{MSM_VIDC_BUF_LINE, msm_vidc_decoder_line_size_iris3 },
{MSM_VIDC_BUF_PERSIST, msm_vidc_decoder_persist_size_iris3 },
{MSM_VIDC_BUF_DPB, msm_vidc_decoder_dpb_size_iris3 },
};
static const struct msm_vidc_buf_type_handle enc_buf_type_handle[] = {
{MSM_VIDC_BUF_INPUT, msm_vidc_encoder_input_size },
{MSM_VIDC_BUF_OUTPUT, msm_vidc_encoder_output_size },
{MSM_VIDC_BUF_INPUT_META, msm_vidc_encoder_input_meta_size },
{MSM_VIDC_BUF_OUTPUT_META, msm_vidc_encoder_output_meta_size },
{MSM_VIDC_BUF_BIN, msm_vidc_encoder_bin_size_iris3 },
{MSM_VIDC_BUF_COMV, msm_vidc_encoder_comv_size_iris3 },
{MSM_VIDC_BUF_NON_COMV, msm_vidc_encoder_non_comv_size_iris3 },
{MSM_VIDC_BUF_LINE, msm_vidc_encoder_line_size_iris3 },
{MSM_VIDC_BUF_DPB, msm_vidc_encoder_dpb_size_iris3 },
{MSM_VIDC_BUF_ARP, msm_vidc_encoder_arp_size_iris3 },
{MSM_VIDC_BUF_VPSS, msm_vidc_encoder_vpss_size_iris3 },
};
if (is_decode_session(inst)) {
buf_type_handle_size = ARRAY_SIZE(dec_buf_type_handle);
buf_type_handle_arr = dec_buf_type_handle;
} else if (is_encode_session(inst)) {
buf_type_handle_size = ARRAY_SIZE(enc_buf_type_handle);
buf_type_handle_arr = enc_buf_type_handle;
}
/* handle invalid session */
if (!buf_type_handle_arr || !buf_type_handle_size) {
i_vpr_e(inst, "%s: invalid session %d\n", __func__, inst->domain);
return size;
}
/* fetch buffer size */
for (i = 0; i < buf_type_handle_size; i++) {
if (buf_type_handle_arr[i].type == buffer_type) {
size = buf_type_handle_arr[i].handle(inst);
break;
}
}
/* handle unknown buffer type */
if (i == buf_type_handle_size) {
i_vpr_e(inst, "%s: unknown buffer type %#x\n", __func__, buffer_type);
goto exit;
}
i_vpr_l(inst, "buffer_size: type: %11s, size: %9u\n", buf_name(buffer_type), size);
exit:
return size;
}
static int msm_vidc_input_min_count_iris3(struct msm_vidc_inst* inst)
{
u32 input_min_count = 0;
u32 total_hb_layer = 0;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
if (is_decode_session(inst)) {
input_min_count = MIN_DEC_INPUT_BUFFERS;
} else if (is_encode_session(inst)) {
total_hb_layer = is_hierb_type_requested(inst) ?
inst->capabilities->cap[ENH_LAYER_COUNT].value + 1 : 0;
if (inst->codec == MSM_VIDC_H264 &&
!inst->capabilities->cap[LAYER_ENABLE].value) {
total_hb_layer = 0;
}
HFI_IRIS3_ENC_MIN_INPUT_BUF_COUNT(input_min_count,
total_hb_layer);
} else {
i_vpr_e(inst, "%s: invalid domain\n",
__func__, inst->domain);
return 0;
}
if (is_thumbnail_session(inst) || is_image_session(inst))
input_min_count = 1;
return input_min_count;
}
static int msm_buffer_dpb_count(struct msm_vidc_inst *inst)
{
int count = 0;
u32 color_fmt;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
/* decoder dpb buffer count */
if (is_decode_session(inst)) {
color_fmt = inst->capabilities->cap[PIX_FMTS].value;
if (is_linear_colorformat(color_fmt))
count = inst->buffers.output.min_count;
return count;
}
/* encoder dpb buffer count */
return msm_vidc_get_recon_buf_count(inst);
}
int msm_buffer_min_count_iris3(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int count = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
switch (buffer_type) {
case MSM_VIDC_BUF_INPUT:
case MSM_VIDC_BUF_INPUT_META:
count = msm_vidc_input_min_count_iris3(inst);
break;
case MSM_VIDC_BUF_OUTPUT:
case MSM_VIDC_BUF_OUTPUT_META:
count = msm_vidc_output_min_count(inst);
break;
case MSM_VIDC_BUF_BIN:
case MSM_VIDC_BUF_COMV:
case MSM_VIDC_BUF_NON_COMV:
case MSM_VIDC_BUF_LINE:
case MSM_VIDC_BUF_PERSIST:
case MSM_VIDC_BUF_ARP:
case MSM_VIDC_BUF_VPSS:
count = msm_vidc_internal_buffer_count(inst, buffer_type);
break;
case MSM_VIDC_BUF_DPB:
count = msm_buffer_dpb_count(inst);
break;
default:
break;
}
i_vpr_l(inst, " min_count: type: %11s, count: %9u\n", buf_name(buffer_type), count);
return count;
}
int msm_buffer_extra_count_iris3(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int count = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
switch (buffer_type) {
case MSM_VIDC_BUF_INPUT:
case MSM_VIDC_BUF_INPUT_META:
count = msm_vidc_input_extra_count(inst);
break;
case MSM_VIDC_BUF_OUTPUT:
case MSM_VIDC_BUF_OUTPUT_META:
count = msm_vidc_output_extra_count(inst);
break;
default:
break;
}
i_vpr_l(inst, "extra_count: type: %11s, count: %9u\n", buf_name(buffer_type), count);
return count;
}

檔案差異因為檔案過大而無法顯示 載入差異

查看文件

@@ -0,0 +1,739 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include "msm_vidc_power_iris3.h"
#include "msm_vidc_inst.h"
#include "msm_vidc_core.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_dt.h"
u64 msm_vidc_calc_freq_iris3(struct msm_vidc_inst *inst, u32 data_size)
{
u64 freq = 0;
struct msm_vidc_core* core;
struct msm_vidc_power* power;
u64 vsp_cycles = 0, vpp_cycles = 0, fw_cycles = 0;
u64 fw_vpp_cycles = 0, bitrate = 0;
u32 vpp_cycles_per_mb;
u32 mbs_per_second;
u32 operating_rate, vsp_factor_num = 1, vsp_factor_den = 1;
u32 base_cycles = 0;
u32 fps;
u32 prio_val;
u32 buf_timetamps_fps, mbpf;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return freq;
}
power = &inst->power;
core = inst->core;
if (!core->dt) {
d_vpr_e("%s: invalid params\n", __func__);
return freq;
}
if (!is_realtime_session(inst)) {
prio_val = inst->capabilities->cap[PRIORITY].value;
if (!prio_val || prio_val > core->dt->allowed_clks_tbl_size)
prio_val = core->dt->allowed_clks_tbl_size;
return core->dt->allowed_clks_tbl[prio_val-1].clock_rate;
}
mbpf = msm_vidc_get_mbs_per_frame(inst);
fps = msm_vidc_get_fps(inst);
buf_timetamps_fps = msm_vidc_calc_window_avg_framerate(inst);
/*
* when buffer detected fps is more than client set value by 10%,
* utilize buffer detected fps to scale clock.
*/
if (div_u64(fps * 11, 10) < buf_timetamps_fps) {
fps = buf_timetamps_fps;
inst->priority_level = MSM_VIDC_PRIORITY_LOW;
}
mbs_per_second = mbpf * fps;
/*
* Calculate vpp, vsp, fw cycles separately for encoder and decoder.
* Even though, most part is common now, in future it may change
* between them.
*/
fw_cycles = fps * inst->capabilities->cap[MB_CYCLES_FW].value;
fw_vpp_cycles = fps * inst->capabilities->cap[MB_CYCLES_FW_VPP].value;
if (inst->domain == MSM_VIDC_ENCODER) {
vpp_cycles_per_mb = is_low_power_session(inst) ?
inst->capabilities->cap[MB_CYCLES_LP].value :
inst->capabilities->cap[MB_CYCLES_VPP].value;
vpp_cycles = mbs_per_second * vpp_cycles_per_mb /
inst->capabilities->cap[PIPE].value;
/* Factor 1.25 for IbP and 1.375 for I1B2b1P GOP structure */
if (inst->capabilities->cap[B_FRAME].value > 1)
vpp_cycles += (vpp_cycles / 4) + (vpp_cycles / 8);
else if (inst->capabilities->cap[B_FRAME].value)
vpp_cycles += vpp_cycles / 4;
/* 21 / 20 is minimum overhead factor */
vpp_cycles += max(div_u64(vpp_cycles, 20), fw_vpp_cycles);
/* 1.01 is multi-pipe overhead */
if (inst->capabilities->cap[PIPE].value > 1)
vpp_cycles += div_u64(vpp_cycles, 100);
/*
* 1080p@480fps usecase needs exactly 338MHz
* without any margin left. Hence, adding 2 percent
* extra to bump it to next level (366MHz).
*/
if (fps == 480)
vpp_cycles += div_u64(vpp_cycles * 2, 100);
/*
* Add 5 percent extra for 720p@960fps use case
* to bump it to next level (366MHz).
*/
if (fps == 960)
vpp_cycles += div_u64(vpp_cycles * 5, 100);
/* VSP */
/* bitrate is based on fps, scale it using operating rate */
operating_rate = inst->capabilities->cap[OPERATING_RATE].value >> 16;
if (operating_rate >
(inst->capabilities->cap[FRAME_RATE].value >> 16) &&
(inst->capabilities->cap[FRAME_RATE].value >> 16)) {
vsp_factor_num = operating_rate;
vsp_factor_den = inst->capabilities->cap[FRAME_RATE].value >> 16;
}
vsp_cycles = div_u64(((u64)inst->capabilities->cap[BIT_RATE].value *
vsp_factor_num), vsp_factor_den);
base_cycles = inst->capabilities->cap[MB_CYCLES_VSP].value;
if (inst->codec == MSM_VIDC_VP9) {
vsp_cycles = div_u64(vsp_cycles * 170, 100);
} else if (inst->capabilities->cap[ENTROPY_MODE].value ==
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC) {
vsp_cycles = div_u64(vsp_cycles * 135, 100);
} else {
base_cycles = 0;
vsp_cycles = div_u64(vsp_cycles, 2);
}
/* VSP FW Overhead 1.05 */
vsp_cycles = div_u64(vsp_cycles * 21, 20);
if (inst->capabilities->cap[STAGE].value == MSM_VIDC_STAGE_1)
vsp_cycles = vsp_cycles * 3;
vsp_cycles += mbs_per_second * base_cycles;
} else if (inst->domain == MSM_VIDC_DECODER) {
/* VPP */
vpp_cycles = mbs_per_second * inst->capabilities->cap[MB_CYCLES_VPP].value /
inst->capabilities->cap[PIPE].value;
/* 21 / 20 is minimum overhead factor */
vpp_cycles += max(vpp_cycles / 20, fw_vpp_cycles);
/* 1.059 is multi-pipe overhead */
if (inst->capabilities->cap[PIPE].value > 1)
vpp_cycles += div_u64(vpp_cycles * 59, 1000);
/* VSP */
base_cycles = inst->has_bframe ?
80 : inst->capabilities->cap[MB_CYCLES_VSP].value;
bitrate = fps * data_size * 8;
vsp_cycles = bitrate;
if (inst->codec == MSM_VIDC_VP9) {
vsp_cycles = div_u64(vsp_cycles * 170, 100);
} else if (inst->capabilities->cap[ENTROPY_MODE].value ==
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC) {
vsp_cycles = div_u64(vsp_cycles * 135, 100);
} else {
base_cycles = 0;
vsp_cycles = div_u64(vsp_cycles, 2);
}
/* VSP FW overhead 1.05 */
vsp_cycles = div_u64(vsp_cycles * 21, 20);
if (inst->capabilities->cap[STAGE].value == MSM_VIDC_STAGE_1)
vsp_cycles = vsp_cycles * 3;
vsp_cycles += mbs_per_second * base_cycles;
/* Add 25 percent extra for 960fps use case */
if (fps >= MAXIMUM_FPS)
vsp_cycles += div_u64(vpp_cycles * 25, 100);
if (inst->codec == MSM_VIDC_VP9 &&
inst->capabilities->cap[STAGE].value ==
MSM_VIDC_STAGE_2 &&
inst->capabilities->cap[PIPE].value == 4 &&
bitrate > 90000000)
vsp_cycles = msm_vidc_max_freq(inst);
} else {
i_vpr_e(inst, "%s: Unknown session type\n", __func__);
return msm_vidc_max_freq(inst);
}
freq = max(vpp_cycles, vsp_cycles);
freq = max(freq, fw_cycles);
i_vpr_p(inst, "%s: filled len %d, required freq %llu, fps %u, mbpf %u\n",
__func__, data_size, freq, fps, mbpf);
return freq;
}
static u64 __calculate_decoder(struct vidc_bus_vote_data *d)
{
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Decoder parameters */
int width, height, lcu_size, fps, dpb_bpp;
bool unified_dpb_opb, dpb_compression_enabled = true,
opb_compression_enabled = false,
llc_ref_read_l2_cache_enabled = false,
llc_top_line_buf_enabled = false;
fp_t dpb_read_compression_factor, dpb_opb_scaling_ratio,
dpb_write_compression_factor, opb_write_compression_factor,
qsmmu_bw_overhead_factor;
bool is_h264_category = true;
/* Derived parameters */
int lcu_per_frame, collocated_bytes_per_lcu, tnbr_per_lcu;
unsigned long bitrate;
unsigned int num_vpp_pipes;
fp_t bins_to_bit_factor, vsp_read_factor, vsp_write_factor,
dpb_factor, dpb_write_factor, y_bw_no_ubwc_8bpp;
fp_t y_bw_no_ubwc_10bpp = 0, y_bw_10bpp_p010 = 0,
motion_vector_complexity = 0;
fp_t dpb_total = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
dpb_read, dpb_write, opb_read, opb_write,
line_buffer_read, line_buffer_write,
total;
} ddr = {0};
struct {
fp_t dpb_read, line_buffer_read, line_buffer_write, total;
} llc = {0};
unsigned long ret = 0;
unsigned int integer_part, frac_part;
width = max(d->input_width, BASELINE_DIMENSIONS.width);
height = max(d->input_height, BASELINE_DIMENSIONS.height);
fps = d->fps;
lcu_size = d->lcu_size;
dpb_bpp = __bpp(d->color_formats[0]);
unified_dpb_opb = d->num_formats == 1;
dpb_opb_scaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
opb_compression_enabled = d->num_formats >= 2 &&
__ubwc(d->color_formats[1]);
integer_part = Q16_INT(d->compression_ratio);
frac_part = Q16_FRAC(d->compression_ratio);
dpb_read_compression_factor = FP(integer_part, frac_part, 100);
integer_part = Q16_INT(d->complexity_factor);
frac_part = Q16_FRAC(d->complexity_factor);
motion_vector_complexity = FP(integer_part, frac_part, 100);
dpb_write_compression_factor = dpb_read_compression_factor;
opb_write_compression_factor = opb_compression_enabled ?
dpb_write_compression_factor : FP_ONE;
num_vpp_pipes = d->num_vpp_pipes;
if (d->codec == MSM_VIDC_HEVC ||
d->codec == MSM_VIDC_HEIC ||
d->codec == MSM_VIDC_VP9) {
/* H264, VP8, MPEG2 use the same settings */
/* HEVC, VP9 use the same setting */
is_h264_category = false;
}
if (d->use_sys_cache) {
llc_ref_read_l2_cache_enabled = true;
if (is_h264_category)
llc_top_line_buf_enabled = true;
}
/* Derived parameters setup */
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
bitrate = DIV_ROUND_UP(d->bitrate, 1000000);
bins_to_bit_factor = FP_INT(4);
vsp_write_factor = bins_to_bit_factor;
vsp_read_factor = bins_to_bit_factor + FP_INT(2);
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
dpb_factor = FP(1, 50, 100);
dpb_write_factor = FP(1, 5, 100);
tnbr_per_lcu = lcu_size == 16 ? 128 :
lcu_size == 32 ? 64 : 128;
/* .... For DDR & LLC ...... */
ddr.vsp_read = fp_div(fp_mult(FP_INT(bitrate),
vsp_read_factor), FP_INT(8));
ddr.vsp_write = fp_div(fp_mult(FP_INT(bitrate),
vsp_write_factor), FP_INT(8));
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
y_bw_no_ubwc_8bpp = fp_div(FP_INT(width * height * fps),
FP_INT(1000 * 1000));
if (dpb_bpp != 8) {
y_bw_no_ubwc_10bpp =
fp_div(fp_mult(y_bw_no_ubwc_8bpp, FP_INT(256)),
FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
}
ddr.dpb_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_read = fp_div(fp_mult(ddr.dpb_read,
fp_mult(dpb_factor, motion_vector_complexity)),
dpb_read_compression_factor);
ddr.dpb_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_write = fp_div(fp_mult(ddr.dpb_write,
fp_mult(dpb_factor, dpb_write_factor)),
dpb_write_compression_factor);
dpb_total = ddr.dpb_read + ddr.dpb_write;
if (llc_ref_read_l2_cache_enabled) {
ddr.dpb_read = fp_div(ddr.dpb_read, is_h264_category ?
FP(1, 30, 100) : FP(1, 14, 100));
llc.dpb_read = dpb_total - ddr.dpb_write - ddr.dpb_read;
}
ddr.opb_read = FP_ZERO;
ddr.opb_write = unified_dpb_opb ? FP_ZERO : (dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : (opb_compression_enabled ?
y_bw_no_ubwc_10bpp : y_bw_10bpp_p010));
ddr.opb_write = fp_div(fp_mult(dpb_factor, ddr.opb_write),
fp_mult(dpb_opb_scaling_ratio, opb_write_compression_factor));
ddr.line_buffer_read =
fp_div(FP_INT(tnbr_per_lcu * lcu_per_frame * fps),
FP_INT(bps(1)));
/* This change is applicable for all IRIS3 targets,
* but currently being done for IRIS3 with 2 pipes
* only due to timeline constraints.
*/
if((num_vpp_pipes == 2) && (is_h264_category))
ddr.line_buffer_write = fp_div(ddr.line_buffer_read,FP_INT(2));
else
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer_read = ddr.line_buffer_read;
llc.line_buffer_write = ddr.line_buffer_write;
ddr.line_buffer_write = ddr.line_buffer_read = FP_ZERO;
}
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.dpb_read + ddr.dpb_write +
ddr.opb_read + ddr.opb_write +
ddr.line_buffer_read + ddr.line_buffer_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.dpb_read + llc.line_buffer_read +
llc.line_buffer_write + ddr.total;
/* Add 25 percent extra for 960fps use case */
if (fps >= MAXIMUM_FPS) {
ddr.total += div_u64(ddr.total * 25, 100);
llc.total += div_u64(llc.total * 25, 100);
}
/* Dump all the variables for easier debugging */
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"DECODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"dpb bitdepth", "%d", dpb_bpp},
{"frame rate", "%d", fps},
{"dpb/opb unified", "%d", unified_dpb_opb},
{"dpb/opb downscaling ratio", DUMP_FP_FMT,
dpb_opb_scaling_ratio},
{"dpb compression", "%d", dpb_compression_enabled},
{"opb compression", "%d", opb_compression_enabled},
{"dpb read compression factor", DUMP_FP_FMT,
dpb_read_compression_factor},
{"dpb write compression factor", DUMP_FP_FMT,
dpb_write_compression_factor},
{"frame width", "%d", width},
{"frame height", "%d", height},
{"llc ref read l2 cache enabled", "%d",
llc_ref_read_l2_cache_enabled},
{"llc top line buf enabled", "%d",
llc_top_line_buf_enabled},
{"DERIVED PARAMETERS (1)", "", DUMP_HEADER_MAGIC},
{"lcus/frame", "%d", lcu_per_frame},
{"bitrate (Mbit/sec)", "%d", bitrate},
{"bins to bit factor", DUMP_FP_FMT, bins_to_bit_factor},
{"dpb write factor", DUMP_FP_FMT, dpb_write_factor},
{"vsp read factor", DUMP_FP_FMT, vsp_read_factor},
{"vsp write factor", DUMP_FP_FMT, vsp_write_factor},
{"tnbr/lcu", "%d", tnbr_per_lcu},
{"collocated bytes/LCU", "%d", collocated_bytes_per_lcu},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"DERIVED PARAMETERS (2)", "", DUMP_HEADER_MAGIC},
{"mv complexity", DUMP_FP_FMT, motion_vector_complexity},
{"qsmmu_bw_overhead_factor", DUMP_FP_FMT,
qsmmu_bw_overhead_factor},
{"INTERMEDIATE DDR B/W", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"opb read", DUMP_FP_FMT, ddr.opb_read},
{"opb write", DUMP_FP_FMT, ddr.opb_write},
{"dpb read", DUMP_FP_FMT, ddr.dpb_read},
{"dpb write", DUMP_FP_FMT, ddr.dpb_write},
{"dpb total", DUMP_FP_FMT, dpb_total},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc dpb read", DUMP_FP_FMT, llc.dpb_read},
{"llc line buffer read", DUMP_FP_FMT, llc.line_buffer_read},
{"llc line buffer write", DUMP_FP_FMT, llc.line_buffer_write},
};
__dump(dump, ARRAY_SIZE(dump));
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static u64 __calculate_encoder(struct vidc_bus_vote_data *d)
{
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Encoder Parameters */
int width, height, fps, lcu_size, bitrate, lcu_per_frame,
collocated_bytes_per_lcu, tnbr_per_lcu, dpb_bpp,
original_color_format, vertical_tile_width, rotation;
bool work_mode_1, original_compression_enabled,
low_power, cropping_or_scaling,
b_frames_enabled = false,
llc_ref_chroma_cache_enabled = false,
llc_top_line_buf_enabled = false,
llc_vpss_rot_line_buf_enabled = false;
unsigned int bins_to_bit_factor;
fp_t dpb_compression_factor,
original_compression_factor,
original_compression_factor_y,
y_bw_no_ubwc_8bpp, y_bw_no_ubwc_10bpp = 0, y_bw_10bpp_p010 = 0,
input_compression_factor,
downscaling_ratio,
ref_y_read_bw_factor, ref_cbcr_read_bw_factor,
recon_write_bw_factor,
total_ref_read_crcb,
qsmmu_bw_overhead_factor;
fp_t integer_part, frac_part;
unsigned long ret = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
ref_read_y, ref_read_crcb, ref_write,
ref_write_overlap, orig_read,
line_buffer_read, line_buffer_write,
total;
} ddr = {0};
struct {
fp_t ref_read_crcb, line_buffer, total;
} llc = {0};
/* Encoder Parameters setup */
rotation = d->rotation;
cropping_or_scaling = false;
vertical_tile_width = 960;
/*
* recon_write_bw_factor varies according to resolution and bit-depth,
* here use 1.08(1.075) for worst case.
* Similar for ref_y_read_bw_factor, it can reach 1.375 for worst case,
* here use 1.3 for average case, and can somewhat balance the
* worst case assumption for UBWC CR factors.
*/
recon_write_bw_factor = FP(1, 8, 100);
ref_y_read_bw_factor = FP(1, 30, 100);
ref_cbcr_read_bw_factor = FP(1, 50, 100);
/* Derived Parameters */
fps = d->fps;
width = max(d->output_width, BASELINE_DIMENSIONS.width);
height = max(d->output_height, BASELINE_DIMENSIONS.height);
downscaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
downscaling_ratio = max(downscaling_ratio, FP_ONE);
bitrate = d->bitrate > 0 ? DIV_ROUND_UP(d->bitrate, 1000000) :
__lut(width, height, fps)->bitrate;
lcu_size = d->lcu_size;
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
tnbr_per_lcu = 16;
dpb_bpp = __bpp(d->color_formats[0]);
y_bw_no_ubwc_8bpp = fp_div(FP_INT(width * height * fps),
FP_INT(1000 * 1000));
if (dpb_bpp != 8) {
y_bw_no_ubwc_10bpp = fp_div(fp_mult(y_bw_no_ubwc_8bpp,
FP_INT(256)), FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
}
b_frames_enabled = d->b_frames_enabled;
original_color_format = d->num_formats >= 1 ?
d->color_formats[0] : MSM_VIDC_FMT_NV12C;
original_compression_enabled = __ubwc(original_color_format);
work_mode_1 = d->work_mode == MSM_VIDC_STAGE_1;
low_power = d->power_mode == VIDC_POWER_LOW;
bins_to_bit_factor = 4;
if (d->use_sys_cache) {
llc_ref_chroma_cache_enabled = true;
llc_top_line_buf_enabled = true,
llc_vpss_rot_line_buf_enabled = true;
}
integer_part = Q16_INT(d->compression_ratio);
frac_part = Q16_FRAC(d->compression_ratio);
dpb_compression_factor = FP(integer_part, frac_part, 100);
integer_part = Q16_INT(d->input_cr);
frac_part = Q16_FRAC(d->input_cr);
input_compression_factor = FP(integer_part, frac_part, 100);
original_compression_factor = original_compression_factor_y =
!original_compression_enabled ? FP_ONE :
__compression_ratio(__lut(width, height, fps), dpb_bpp);
/* use input cr if it is valid (not 1), otherwise use lut */
if (original_compression_enabled &&
input_compression_factor != FP_ONE) {
original_compression_factor = input_compression_factor;
/* Luma usually has lower compression factor than Chroma,
* input cf is overall cf, add 1.08 factor for Luma cf
*/
original_compression_factor_y =
input_compression_factor > FP(1, 8, 100) ?
fp_div(input_compression_factor, FP(1, 8, 100)) :
input_compression_factor;
}
ddr.vsp_read = fp_div(FP_INT(bitrate * bins_to_bit_factor), FP_INT(8));
ddr.vsp_write = ddr.vsp_read + fp_div(FP_INT(bitrate), FP_INT(8));
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
ddr.ref_read_y = dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
if (b_frames_enabled)
ddr.ref_read_y = ddr.ref_read_y * 2;
ddr.ref_read_y = fp_div(ddr.ref_read_y, dpb_compression_factor);
ddr.ref_read_crcb = fp_mult((ddr.ref_read_y / 2),
ref_cbcr_read_bw_factor);
if (width > vertical_tile_width) {
ddr.ref_read_y = fp_mult(ddr.ref_read_y,
ref_y_read_bw_factor);
}
if (llc_ref_chroma_cache_enabled) {
total_ref_read_crcb = ddr.ref_read_crcb;
ddr.ref_read_crcb = fp_div(ddr.ref_read_crcb,
ref_cbcr_read_bw_factor);
llc.ref_read_crcb = total_ref_read_crcb - ddr.ref_read_crcb;
}
ddr.ref_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.ref_write = fp_div(fp_mult(ddr.ref_write, FP(1, 50, 100)),
dpb_compression_factor);
if (width > vertical_tile_width) {
ddr.ref_write_overlap = fp_mult(ddr.ref_write,
(recon_write_bw_factor - FP_ONE));
ddr.ref_write = fp_mult(ddr.ref_write, recon_write_bw_factor);
}
ddr.orig_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp :
(original_compression_enabled ? y_bw_no_ubwc_10bpp :
y_bw_10bpp_p010);
ddr.orig_read = fp_div(fp_mult(fp_mult(ddr.orig_read, FP(1, 50, 100)),
downscaling_ratio), original_compression_factor);
if (rotation == 90 || rotation == 270)
ddr.orig_read *= lcu_size == 32 ? (dpb_bpp == 8 ? 1 : 3) : 2;
ddr.line_buffer_read =
fp_div(FP_INT(tnbr_per_lcu * lcu_per_frame * fps),
FP_INT(bps(1)));
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer = ddr.line_buffer_read + ddr.line_buffer_write;
ddr.line_buffer_read = ddr.line_buffer_write = FP_ZERO;
}
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.ref_read_y + ddr.ref_read_crcb +
ddr.ref_write + ddr.ref_write_overlap +
ddr.orig_read +
ddr.line_buffer_read + ddr.line_buffer_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.ref_read_crcb + llc.line_buffer + ddr.total;
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"ENCODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"width", "%d", width},
{"height", "%d", height},
{"fps", "%d", fps},
{"dpb bitdepth", "%d", dpb_bpp},
{"input downscaling ratio", DUMP_FP_FMT, downscaling_ratio},
{"rotation", "%d", rotation},
{"cropping or scaling", "%d", cropping_or_scaling},
{"low power mode", "%d", low_power},
{"work Mode", "%d", work_mode_1},
{"B frame enabled", "%d", b_frames_enabled},
{"original frame format", "%#x", original_color_format},
{"original compression enabled", "%d",
original_compression_enabled},
{"dpb compression factor", DUMP_FP_FMT,
dpb_compression_factor},
{"input compression factor", DUMP_FP_FMT,
input_compression_factor},
{"llc ref chroma cache enabled", DUMP_FP_FMT,
llc_ref_chroma_cache_enabled},
{"llc top line buf enabled", DUMP_FP_FMT,
llc_top_line_buf_enabled},
{"llc vpss rot line buf enabled ", DUMP_FP_FMT,
llc_vpss_rot_line_buf_enabled},
{"DERIVED PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"bitrate (Mbit/sec)", "%lu", bitrate},
{"bins to bit factor", "%u", bins_to_bit_factor},
{"original compression factor", DUMP_FP_FMT,
original_compression_factor},
{"original compression factor y", DUMP_FP_FMT,
original_compression_factor_y},
{"qsmmu_bw_overhead_factor",
DUMP_FP_FMT, qsmmu_bw_overhead_factor},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"INTERMEDIATE B/W DDR", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"ref read y", DUMP_FP_FMT, ddr.ref_read_y},
{"ref read crcb", DUMP_FP_FMT, ddr.ref_read_crcb},
{"ref write", DUMP_FP_FMT, ddr.ref_write},
{"ref write overlap", DUMP_FP_FMT, ddr.ref_write_overlap},
{"original read", DUMP_FP_FMT, ddr.orig_read},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc ref read crcb", DUMP_FP_FMT, llc.ref_read_crcb},
{"llc line buffer", DUMP_FP_FMT, llc.line_buffer},
};
__dump(dump, ARRAY_SIZE(dump));
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static u64 __calculate(struct msm_vidc_inst* inst, struct vidc_bus_vote_data *d)
{
u64 value = 0;
switch (d->domain) {
case MSM_VIDC_ENCODER:
value = __calculate_encoder(d);
break;
case MSM_VIDC_DECODER:
value = __calculate_decoder(d);
break;
default:
i_vpr_e(inst, "%s: Unknown Domain %#x", __func__, d->domain);
}
return value;
}
int msm_vidc_calc_bw_iris3(struct msm_vidc_inst *inst,
struct vidc_bus_vote_data *vidc_data)
{
int value = 0;
if (!vidc_data)
return value;
value = __calculate(inst, vidc_data);
return value;
}