video: driver: add power changes

Add or amend below functionalities
- scale clocks
- scale buses
- buffer counts
- buffer sizes

Change-Id: I3cddbb7112cd85a84cf86256134059f52b66a3af
Signed-off-by: Maheshwar Ajja <majja@codeaurora.org>
This commit is contained in:
Maheshwar Ajja
2020-12-21 11:57:04 -08:00
parent 38b9dd655f
commit 7509e9f16b
19 changed files with 1774 additions and 58 deletions

View File

@@ -6,9 +6,11 @@
#ifndef __H_MSM_VIDC_POWER_IRIS2_H__
#define __H_MSM_VIDC_POWER_IRIS2_H__
#include "msm_vidc_power.h"
#include "msm_vidc_inst.h"
u64 msm_vidc_calc_freq_iris2(struct msm_vidc_inst* inst);
u64 msm_vidc_calc_bw_iris2(struct msm_vidc_inst* inst);
u64 msm_vidc_calc_freq_iris2(struct msm_vidc_inst* inst, u32 data_size);
int msm_vidc_calc_bw_iris2(struct msm_vidc_inst* inst,
struct vidc_bus_vote_data* vote_data);
#endif

View File

@@ -500,8 +500,8 @@ static struct msm_vidc_session_ops msm_session_ops = {
.buffer_size = msm_buffer_size_iris2,
.min_count = msm_buffer_min_count_iris2,
.extra_count = msm_buffer_extra_count_iris2,
.calc_freq = NULL,
.calc_bw = NULL,
.calc_freq = msm_vidc_calc_freq_iris2,
.calc_bw = msm_vidc_calc_bw_iris2,
.decide_work_route = NULL,
.decide_work_mode = NULL,
.decide_core_and_power_mode = NULL,

View File

@@ -5,26 +5,675 @@
#include "msm_vidc_power_iris2.h"
#include "msm_vidc_inst.h"
#include "msm_vidc_core.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_debug.h"
u64 msm_vidc_calc_freq_iris2(struct msm_vidc_inst *inst)
u64 msm_vidc_calc_freq_iris2(struct msm_vidc_inst *inst, u32 data_size)
{
u64 freq = 0;
struct msm_vidc_core* core;
struct msm_vidc_power* power;
u64 vsp_cycles = 0, vpp_cycles = 0, fw_cycles = 0;
u64 fw_vpp_cycles = 0;
u32 vpp_cycles_per_mb;
u32 mbs_per_second;
u32 operating_rate, vsp_factor_num = 1, vsp_factor_den = 1;
u32 base_cycles = 0;
u32 fps;
/* 240 Mhz for iris2 based video hw */
freq = 240 * 1000 * 1000;
s_vpr_h(inst->sid, "%s: freq %lu\n", __func__, freq);
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return freq;
}
core = inst->core;
power = &inst->power;
mbs_per_second = msm_vidc_get_inst_load(inst, LOAD_POWER);
fps = msm_vidc_get_fps(inst);
/*
* Calculate vpp, vsp, fw cycles separately for encoder and decoder.
* Even though, most part is common now, in future it may change
* between them.
*/
fw_cycles = fps * core->capabilities[MB_CYCLES_FW].value;
fw_vpp_cycles = fps * core->capabilities[MB_CYCLES_FW_VPP].value;
if (inst->domain == MSM_VIDC_ENCODER) {
vpp_cycles_per_mb = inst->flags & VIDC_LOW_POWER ?
core->capabilities[MB_CYCLES_LP].value :
core->capabilities[MB_CYCLES_VPP].value;
vpp_cycles = mbs_per_second * vpp_cycles_per_mb /
inst->capabilities->cap[PIPE].value;
/* 1.25 factor for IBP GOP structure */
if (inst->capabilities->cap[B_FRAME].value)
vpp_cycles += vpp_cycles / 4;
/* 21 / 20 is minimum overhead factor */
vpp_cycles += max(div_u64(vpp_cycles, 20), fw_vpp_cycles);
/* 1.01 is multi-pipe overhead */
if (inst->capabilities->cap[PIPE].value > 1)
vpp_cycles += div_u64(vpp_cycles, 100);
/*
* 1080p@480fps usecase needs exactly 338MHz
* without any margin left. Hence, adding 2 percent
* extra to bump it to next level (366MHz).
*/
if (fps == 480)
vpp_cycles += div_u64(vpp_cycles * 2, 100);
/* VSP */
/* bitrate is based on fps, scale it using operating rate */
operating_rate = inst->prop.operating_rate >> 16;
if (operating_rate > (inst->prop.frame_rate >> 16) &&
(inst->prop.frame_rate >> 16)) {
vsp_factor_num = operating_rate;
vsp_factor_den = inst->prop.frame_rate >> 16;
}
vsp_cycles = div_u64(((u64)inst->prop.bitrate *
vsp_factor_num), vsp_factor_den);
base_cycles = core->capabilities[MB_CYCLES_VSP].value;
if (inst->codec == MSM_VIDC_VP9) {
vsp_cycles = div_u64(vsp_cycles * 170, 100);
} else if (inst->capabilities->cap[ENTROPY_MODE].value ==
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC) {
vsp_cycles = div_u64(vsp_cycles * 135, 100);
} else {
base_cycles = 0;
vsp_cycles = div_u64(vsp_cycles, 2);
/* VSP FW Overhead 1.05 */
vsp_cycles = div_u64(vsp_cycles * 21, 20);
}
if (inst->capabilities->cap[STAGE].value == MSM_VIDC_STAGE_1)
vsp_cycles = vsp_cycles * 3;
vsp_cycles += mbs_per_second * base_cycles;
} else if (inst->domain == MSM_VIDC_DECODER) {
/* VPP */
vpp_cycles = mbs_per_second * core->capabilities[MB_CYCLES_VPP].value /
inst->capabilities->cap[PIPE].value;
/* 21 / 20 is minimum overhead factor */
vpp_cycles += max(vpp_cycles / 20, fw_vpp_cycles);
/* 1.059 is multi-pipe overhead */
if (inst->capabilities->cap[PIPE].value > 1)
vpp_cycles += div_u64(vpp_cycles * 59, 1000);
/* VSP */
base_cycles = core->capabilities[MB_CYCLES_VSP].value;
vsp_cycles = fps * data_size * 8;
if (inst->codec == MSM_VIDC_VP9) {
vsp_cycles = div_u64(vsp_cycles * 170, 100);
} else if (inst->capabilities->cap[ENTROPY_MODE].value ==
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC) {
vsp_cycles = div_u64(vsp_cycles * 135, 100);
} else {
base_cycles = 0;
vsp_cycles = div_u64(vsp_cycles, 2);
/* VSP FW overhead 1.05 */
vsp_cycles = div_u64(vsp_cycles * 21, 20);
}
if (inst->capabilities->cap[STAGE].value == MSM_VIDC_STAGE_1)
vsp_cycles = vsp_cycles * 3;
vsp_cycles += mbs_per_second * base_cycles;
} else {
s_vpr_e(inst->sid, "%s: Unknown session type\n", __func__);
return msm_vidc_max_freq(inst);
}
freq = max(vpp_cycles, vsp_cycles);
freq = max(freq, fw_cycles);
s_vpr_p(inst->sid, "%s: inst %pK: filled len %d required freq %llu\n",
__func__, inst, data_size, freq);
return freq;
}
u64 msm_vidc_calc_bw_iris2(struct msm_vidc_inst *inst)
static u64 __calculate_decoder(struct vidc_bus_vote_data *d)
{
u64 freq = 0;
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Decoder parameters */
int width, height, lcu_size, fps, dpb_bpp;
bool unified_dpb_opb, dpb_compression_enabled = true,
opb_compression_enabled = false,
llc_ref_read_l2_cache_enabled = false,
llc_top_line_buf_enabled = false;
fp_t dpb_read_compression_factor, dpb_opb_scaling_ratio,
dpb_write_compression_factor, opb_write_compression_factor,
qsmmu_bw_overhead_factor;
bool is_h264_category = true;
/* 600 Mhz for iris2 based video hw */
freq = 600 * 1000 * 1000;
s_vpr_h(inst->sid, "%s: freq %lu\n", __func__, freq);
/* Derived parameters */
int lcu_per_frame, collocated_bytes_per_lcu, tnbr_per_lcu;
unsigned long bitrate;
unsigned int num_vpp_pipes;
return freq;
fp_t bins_to_bit_factor, vsp_read_factor, vsp_write_factor,
dpb_factor, dpb_write_factor, y_bw_no_ubwc_8bpp;
fp_t y_bw_no_ubwc_10bpp = 0, y_bw_10bpp_p010 = 0,
motion_vector_complexity = 0;
fp_t dpb_total = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
dpb_read, dpb_write, opb_read, opb_write,
line_buffer_read, line_buffer_write,
total;
} ddr = {0};
struct {
fp_t dpb_read, line_buffer_read, line_buffer_write, total;
} llc = {0};
unsigned long ret = 0;
unsigned int integer_part, frac_part;
width = max(d->input_width, BASELINE_DIMENSIONS.width);
height = max(d->input_height, BASELINE_DIMENSIONS.height);
fps = d->fps;
lcu_size = d->lcu_size;
dpb_bpp = __bpp(d->color_formats[0]);
unified_dpb_opb = d->num_formats == 1;
dpb_opb_scaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
opb_compression_enabled = d->num_formats >= 2 &&
__ubwc(d->color_formats[1]);
integer_part = Q16_INT(d->compression_ratio);
frac_part = Q16_FRAC(d->compression_ratio);
dpb_read_compression_factor = FP(integer_part, frac_part, 100);
integer_part = Q16_INT(d->complexity_factor);
frac_part = Q16_FRAC(d->complexity_factor);
motion_vector_complexity = FP(integer_part, frac_part, 100);
dpb_write_compression_factor = dpb_read_compression_factor;
opb_write_compression_factor = opb_compression_enabled ?
dpb_write_compression_factor : FP_ONE;
num_vpp_pipes = d->num_vpp_pipes;
if (d->codec == MSM_VIDC_HEVC ||
d->codec == MSM_VIDC_VP9) {
/* H264, VP8, MPEG2 use the same settings */
/* HEVC, VP9 use the same setting */
is_h264_category = false;
}
if (d->use_sys_cache) {
llc_ref_read_l2_cache_enabled = true;
if (is_h264_category)
llc_top_line_buf_enabled = true;
}
/* Derived parameters setup */
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
bitrate = DIV_ROUND_UP(d->bitrate, 1000000);
bins_to_bit_factor = FP_INT(4);
vsp_write_factor = bins_to_bit_factor;
vsp_read_factor = bins_to_bit_factor + FP_INT(2);
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
dpb_factor = FP(1, 50, 100);
dpb_write_factor = FP(1, 5, 100);
tnbr_per_lcu = lcu_size == 16 ? 128 :
lcu_size == 32 ? 64 : 128;
/* .... For DDR & LLC ...... */
ddr.vsp_read = fp_div(fp_mult(FP_INT(bitrate),
vsp_read_factor), FP_INT(8));
ddr.vsp_write = fp_div(fp_mult(FP_INT(bitrate),
vsp_write_factor), FP_INT(8));
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
y_bw_no_ubwc_8bpp = fp_div(FP_INT(width * height * fps),
FP_INT(1000 * 1000));
if (dpb_bpp != 8) {
y_bw_no_ubwc_10bpp =
fp_div(fp_mult(y_bw_no_ubwc_8bpp, FP_INT(256)),
FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
}
ddr.dpb_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_read = fp_div(fp_mult(ddr.dpb_read,
fp_mult(dpb_factor, motion_vector_complexity)),
dpb_read_compression_factor);
ddr.dpb_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_write = fp_div(fp_mult(ddr.dpb_write,
fp_mult(dpb_factor, dpb_write_factor)),
dpb_write_compression_factor);
dpb_total = ddr.dpb_read + ddr.dpb_write;
if (llc_ref_read_l2_cache_enabled) {
ddr.dpb_read = fp_div(ddr.dpb_read, is_h264_category ?
FP(1, 30, 100) : FP(1, 14, 100));
llc.dpb_read = dpb_total - ddr.dpb_write - ddr.dpb_read;
}
ddr.opb_read = FP_ZERO;
ddr.opb_write = unified_dpb_opb ? FP_ZERO : (dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : (opb_compression_enabled ?
y_bw_no_ubwc_10bpp : y_bw_10bpp_p010));
ddr.opb_write = fp_div(fp_mult(dpb_factor, ddr.opb_write),
fp_mult(dpb_opb_scaling_ratio, opb_write_compression_factor));
ddr.line_buffer_read =
fp_div(FP_INT(tnbr_per_lcu * lcu_per_frame * fps),
FP_INT(bps(1)));
/* This change is applicable for all IRIS2 targets,
* but currently being done for IRIS2 with 2 pipes
* only due to timeline constraints.
*/
if((num_vpp_pipes == 2) && (is_h264_category))
ddr.line_buffer_write = fp_div(ddr.line_buffer_read,FP_INT(2));
else
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer_read = ddr.line_buffer_read;
llc.line_buffer_write = ddr.line_buffer_write;
ddr.line_buffer_write = ddr.line_buffer_read = FP_ZERO;
}
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.dpb_read + ddr.dpb_write +
ddr.opb_read + ddr.opb_write +
ddr.line_buffer_read + ddr.line_buffer_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.dpb_read + llc.line_buffer_read +
llc.line_buffer_write + ddr.total;
/* Dump all the variables for easier debugging */
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"DECODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"dpb bitdepth", "%d", dpb_bpp},
{"frame rate", "%d", fps},
{"dpb/opb unified", "%d", unified_dpb_opb},
{"dpb/opb downscaling ratio", DUMP_FP_FMT,
dpb_opb_scaling_ratio},
{"dpb compression", "%d", dpb_compression_enabled},
{"opb compression", "%d", opb_compression_enabled},
{"dpb read compression factor", DUMP_FP_FMT,
dpb_read_compression_factor},
{"dpb write compression factor", DUMP_FP_FMT,
dpb_write_compression_factor},
{"frame width", "%d", width},
{"frame height", "%d", height},
{"llc ref read l2 cache enabled", "%d",
llc_ref_read_l2_cache_enabled},
{"llc top line buf enabled", "%d",
llc_top_line_buf_enabled},
{"DERIVED PARAMETERS (1)", "", DUMP_HEADER_MAGIC},
{"lcus/frame", "%d", lcu_per_frame},
{"bitrate (Mbit/sec)", "%d", bitrate},
{"bins to bit factor", DUMP_FP_FMT, bins_to_bit_factor},
{"dpb write factor", DUMP_FP_FMT, dpb_write_factor},
{"vsp read factor", DUMP_FP_FMT, vsp_read_factor},
{"vsp write factor", DUMP_FP_FMT, vsp_write_factor},
{"tnbr/lcu", "%d", tnbr_per_lcu},
{"collocated bytes/LCU", "%d", collocated_bytes_per_lcu},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"DERIVED PARAMETERS (2)", "", DUMP_HEADER_MAGIC},
{"mv complexity", DUMP_FP_FMT, motion_vector_complexity},
{"qsmmu_bw_overhead_factor", DUMP_FP_FMT,
qsmmu_bw_overhead_factor},
{"INTERMEDIATE DDR B/W", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"opb read", DUMP_FP_FMT, ddr.opb_read},
{"opb write", DUMP_FP_FMT, ddr.opb_write},
{"dpb read", DUMP_FP_FMT, ddr.dpb_read},
{"dpb write", DUMP_FP_FMT, ddr.dpb_write},
{"dpb total", DUMP_FP_FMT, dpb_total},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc dpb read", DUMP_FP_FMT, llc.dpb_read},
{"llc line buffer read", DUMP_FP_FMT, llc.line_buffer_read},
{"llc line buffer write", DUMP_FP_FMT, llc.line_buffer_write},
};
__dump(dump, ARRAY_SIZE(dump));
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static u64 __calculate_encoder(struct vidc_bus_vote_data *d)
{
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Encoder Parameters */
int width, height, fps, lcu_size, bitrate, lcu_per_frame,
collocated_bytes_per_lcu, tnbr_per_lcu, dpb_bpp,
original_color_format, vertical_tile_width, rotation;
bool work_mode_1, original_compression_enabled,
low_power, cropping_or_scaling,
b_frames_enabled = false,
llc_ref_chroma_cache_enabled = false,
llc_top_line_buf_enabled = false,
llc_vpss_rot_line_buf_enabled = false;
unsigned int bins_to_bit_factor;
fp_t dpb_compression_factor,
original_compression_factor,
original_compression_factor_y,
y_bw_no_ubwc_8bpp, y_bw_no_ubwc_10bpp = 0, y_bw_10bpp_p010 = 0,
input_compression_factor,
downscaling_ratio,
ref_y_read_bw_factor, ref_cbcr_read_bw_factor,
recon_write_bw_factor,
total_ref_read_crcb,
qsmmu_bw_overhead_factor;
fp_t integer_part, frac_part;
unsigned long ret = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
ref_read_y, ref_read_crcb, ref_write,
ref_write_overlap, orig_read,
line_buffer_read, line_buffer_write,
total;
} ddr = {0};
struct {
fp_t ref_read_crcb, line_buffer, total;
} llc = {0};
/* Encoder Parameters setup */
rotation = d->rotation;
cropping_or_scaling = false;
vertical_tile_width = 960;
/*
* recon_write_bw_factor varies according to resolution and bit-depth,
* here use 1.08(1.075) for worst case.
* Similar for ref_y_read_bw_factor, it can reach 1.375 for worst case,
* here use 1.3 for average case, and can somewhat balance the
* worst case assumption for UBWC CR factors.
*/
recon_write_bw_factor = FP(1, 8, 100);
ref_y_read_bw_factor = FP(1, 30, 100);
ref_cbcr_read_bw_factor = FP(1, 50, 100);
/* Derived Parameters */
fps = d->fps;
width = max(d->output_width, BASELINE_DIMENSIONS.width);
height = max(d->output_height, BASELINE_DIMENSIONS.height);
downscaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
downscaling_ratio = max(downscaling_ratio, FP_ONE);
bitrate = d->bitrate > 0 ? DIV_ROUND_UP(d->bitrate, 1000000) :
__lut(width, height, fps)->bitrate;
lcu_size = d->lcu_size;
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
tnbr_per_lcu = 16;
dpb_bpp = __bpp(d->color_formats[0]);
y_bw_no_ubwc_8bpp = fp_div(FP_INT(width * height * fps),
FP_INT(1000 * 1000));
if (dpb_bpp != 8) {
y_bw_no_ubwc_10bpp = fp_div(fp_mult(y_bw_no_ubwc_8bpp,
FP_INT(256)), FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
}
b_frames_enabled = d->b_frames_enabled;
original_color_format = d->num_formats >= 1 ?
d->color_formats[0] : MSM_VIDC_FMT_NV12_UBWC;
original_compression_enabled = __ubwc(original_color_format);
work_mode_1 = d->work_mode == MSM_VIDC_STAGE_1;
low_power = d->power_mode == VIDC_POWER_LOW;
bins_to_bit_factor = 4;
if (d->use_sys_cache) {
llc_ref_chroma_cache_enabled = true;
llc_top_line_buf_enabled = true,
llc_vpss_rot_line_buf_enabled = true;
}
integer_part = Q16_INT(d->compression_ratio);
frac_part = Q16_FRAC(d->compression_ratio);
dpb_compression_factor = FP(integer_part, frac_part, 100);
integer_part = Q16_INT(d->input_cr);
frac_part = Q16_FRAC(d->input_cr);
input_compression_factor = FP(integer_part, frac_part, 100);
original_compression_factor = original_compression_factor_y =
!original_compression_enabled ? FP_ONE :
__compression_ratio(__lut(width, height, fps), dpb_bpp);
/* use input cr if it is valid (not 1), otherwise use lut */
if (original_compression_enabled &&
input_compression_factor != FP_ONE) {
original_compression_factor = input_compression_factor;
/* Luma usually has lower compression factor than Chroma,
* input cf is overall cf, add 1.08 factor for Luma cf
*/
original_compression_factor_y =
input_compression_factor > FP(1, 8, 100) ?
fp_div(input_compression_factor, FP(1, 8, 100)) :
input_compression_factor;
}
ddr.vsp_read = fp_div(FP_INT(bitrate * bins_to_bit_factor), FP_INT(8));
ddr.vsp_write = ddr.vsp_read + fp_div(FP_INT(bitrate), FP_INT(8));
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
ddr.ref_read_y = dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
if (b_frames_enabled)
ddr.ref_read_y = ddr.ref_read_y * 2;
ddr.ref_read_y = fp_div(ddr.ref_read_y, dpb_compression_factor);
ddr.ref_read_crcb = fp_mult((ddr.ref_read_y / 2),
ref_cbcr_read_bw_factor);
if (width > vertical_tile_width) {
ddr.ref_read_y = fp_mult(ddr.ref_read_y,
ref_y_read_bw_factor);
}
if (llc_ref_chroma_cache_enabled) {
total_ref_read_crcb = ddr.ref_read_crcb;
ddr.ref_read_crcb = fp_div(ddr.ref_read_crcb,
ref_cbcr_read_bw_factor);
llc.ref_read_crcb = total_ref_read_crcb - ddr.ref_read_crcb;
}
ddr.ref_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.ref_write = fp_div(fp_mult(ddr.ref_write, FP(1, 50, 100)),
dpb_compression_factor);
if (width > vertical_tile_width) {
ddr.ref_write_overlap = fp_mult(ddr.ref_write,
(recon_write_bw_factor - FP_ONE));
ddr.ref_write = fp_mult(ddr.ref_write, recon_write_bw_factor);
}
ddr.orig_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp :
(original_compression_enabled ? y_bw_no_ubwc_10bpp :
y_bw_10bpp_p010);
ddr.orig_read = fp_div(fp_mult(fp_mult(ddr.orig_read, FP(1, 50, 100)),
downscaling_ratio), original_compression_factor);
if (rotation == 90 || rotation == 270)
ddr.orig_read *= lcu_size == 32 ? (dpb_bpp == 8 ? 1 : 3) : 2;
ddr.line_buffer_read =
fp_div(FP_INT(tnbr_per_lcu * lcu_per_frame * fps),
FP_INT(bps(1)));
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer = ddr.line_buffer_read + ddr.line_buffer_write;
ddr.line_buffer_read = ddr.line_buffer_write = FP_ZERO;
}
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.ref_read_y + ddr.ref_read_crcb +
ddr.ref_write + ddr.ref_write_overlap +
ddr.orig_read +
ddr.line_buffer_read + ddr.line_buffer_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.ref_read_crcb + llc.line_buffer + ddr.total;
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"ENCODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"width", "%d", width},
{"height", "%d", height},
{"fps", "%d", fps},
{"dpb bitdepth", "%d", dpb_bpp},
{"input downscaling ratio", DUMP_FP_FMT, downscaling_ratio},
{"rotation", "%d", rotation},
{"cropping or scaling", "%d", cropping_or_scaling},
{"low power mode", "%d", low_power},
{"work Mode", "%d", work_mode_1},
{"B frame enabled", "%d", b_frames_enabled},
{"original frame format", "%#x", original_color_format},
{"original compression enabled", "%d",
original_compression_enabled},
{"dpb compression factor", DUMP_FP_FMT,
dpb_compression_factor},
{"input compression factor", DUMP_FP_FMT,
input_compression_factor},
{"llc ref chroma cache enabled", DUMP_FP_FMT,
llc_ref_chroma_cache_enabled},
{"llc top line buf enabled", DUMP_FP_FMT,
llc_top_line_buf_enabled},
{"llc vpss rot line buf enabled ", DUMP_FP_FMT,
llc_vpss_rot_line_buf_enabled},
{"DERIVED PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"bitrate (Mbit/sec)", "%lu", bitrate},
{"bins to bit factor", "%u", bins_to_bit_factor},
{"original compression factor", DUMP_FP_FMT,
original_compression_factor},
{"original compression factor y", DUMP_FP_FMT,
original_compression_factor_y},
{"qsmmu_bw_overhead_factor",
DUMP_FP_FMT, qsmmu_bw_overhead_factor},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"INTERMEDIATE B/W DDR", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"ref read y", DUMP_FP_FMT, ddr.ref_read_y},
{"ref read crcb", DUMP_FP_FMT, ddr.ref_read_crcb},
{"ref write", DUMP_FP_FMT, ddr.ref_write},
{"ref write overlap", DUMP_FP_FMT, ddr.ref_write_overlap},
{"original read", DUMP_FP_FMT, ddr.orig_read},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc ref read crcb", DUMP_FP_FMT, llc.ref_read_crcb},
{"llc line buffer", DUMP_FP_FMT, llc.line_buffer},
};
__dump(dump, ARRAY_SIZE(dump));
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static u64 __calculate(struct msm_vidc_inst* inst, struct vidc_bus_vote_data *d)
{
u64 value = 0;
switch (d->domain) {
case MSM_VIDC_ENCODER:
value = __calculate_encoder(d);
break;
case MSM_VIDC_DECODER:
value = __calculate_decoder(d);
break;
default:
s_vpr_e(inst->sid, "Unknown Domain %#x", d->domain);
}
return value;
}
int msm_vidc_calc_bw_iris2(struct msm_vidc_inst *inst,
struct vidc_bus_vote_data *vidc_data)
{
int value = 0;
if (!vidc_data)
return value;
value = __calculate(inst, vidc_data);
return value;
}

View File

@@ -8,6 +8,15 @@
#include "msm_vidc_inst.h"
#define MIN_DEC_INPUT_BUFFERS 4
#define MIN_DEC_OUTPUT_BUFFERS 4
#define MIN_ENC_INPUT_BUFFERS 4
#define MIN_ENC_OUTPUT_BUFFERS 4
#define DCVS_ENC_EXTRA_INPUT_BUFFERS 4
#define DCVS_DEC_EXTRA_OUTPUT_BUFFERS 4
u32 msm_vidc_input_min_count(struct msm_vidc_inst *inst);
u32 msm_vidc_output_min_count(struct msm_vidc_inst *inst);
u32 msm_vidc_input_extra_count(struct msm_vidc_inst *inst);

View File

@@ -22,6 +22,7 @@
extern int msm_vidc_debug;
extern bool msm_vidc_lossless_encode;
extern bool msm_vidc_syscache_disable;
extern int msm_vidc_clock_voting;
/* To enable messages OR these values and
* echo the result to debugfs file.

View File

@@ -12,6 +12,8 @@
#include "msm_vidc_core.h"
#include "msm_vidc_inst.h"
#define MSM_VIDC_SESSION_INACTIVE_THRESHOLD_MS 1000
static inline is_decode_session(struct msm_vidc_inst *inst)
{
return inst->domain == MSM_VIDC_DECODER;
@@ -59,16 +61,57 @@ static inline is_internal_buffer(enum msm_vidc_buffer_type buffer_type)
buffer_type == MSM_VIDC_BUF_VPSS;
}
static inline bool is_linear_colorformat(enum msm_vidc_colorformat_type colorformat)
{
return colorformat == MSM_VIDC_FMT_NV12 ||
colorformat == MSM_VIDC_FMT_NV21 ||
colorformat == MSM_VIDC_FMT_NV12_P010;
}
static inline bool is_10bit_colorformat(enum msm_vidc_colorformat_type colorformat)
{
return colorformat == MSM_VIDC_FMT_NV12_P010 ||
colorformat == MSM_VIDC_FMT_NV12_TP10_UBWC;
}
static inline bool is_secondary_output_mode(struct msm_vidc_inst *inst)
{
return false; // TODO: inst->stream_output_mode == HAL_VIDEO_DECODER_SECONDARY;
}
static inline bool is_turbo_session(struct msm_vidc_inst *inst)
{
return !!(inst->flags & VIDC_TURBO);
}
static inline bool is_thumbnail_session(struct msm_vidc_inst *inst)
{
return !!(inst->flags & VIDC_THUMBNAIL);
}
static inline bool is_low_power_session(struct msm_vidc_inst *inst)
{
return !!(inst->flags & VIDC_LOW_POWER);
}
static inline bool is_realtime_session(struct msm_vidc_inst *inst)
{
return false; // TODO: fix it
}
static inline bool is_active_session(u64 prev, u64 curr)
{
u64 ts_delta;
if (!prev || !curr)
return true;
ts_delta = (prev < curr) ? curr - prev : prev - curr;
return ((ts_delta / NSEC_PER_MSEC) <=
MSM_VIDC_SESSION_INACTIVE_THRESHOLD_MS);
}
void print_vidc_buffer(u32 tag, const char *str, struct msm_vidc_inst *inst,
struct msm_vidc_buffer *vbuf);
void print_vb2_buffer(const char *str, struct msm_vidc_inst *inst,
@@ -99,6 +142,8 @@ int msm_vidc_remove_session(struct msm_vidc_inst *inst);
int msm_vidc_add_session(struct msm_vidc_inst *inst);
int msm_vidc_session_open(struct msm_vidc_inst *inst);
int msm_vidc_session_set_codec(struct msm_vidc_inst *inst);
int msm_vidc_session_start(struct msm_vidc_inst* inst,
enum msm_vidc_port_type port);
int msm_vidc_session_stop(struct msm_vidc_inst *inst,
enum msm_vidc_port_type port);
int msm_vidc_session_close(struct msm_vidc_inst *inst);
@@ -140,6 +185,9 @@ struct msm_vidc_buffer *get_meta_buffer(struct msm_vidc_inst *inst,
struct msm_vidc_inst *get_inst(struct msm_vidc_core *core,
u32 session_id);
void put_inst(struct msm_vidc_inst *inst);
int msm_vidc_get_mbs_per_frame(struct msm_vidc_inst* inst);
int msm_vidc_get_fps(struct msm_vidc_inst* inst);
int msm_vidc_num_queued_bufs(struct msm_vidc_inst* inst, u32 type);
void core_lock(struct msm_vidc_core *core, const char *function);
void core_unlock(struct msm_vidc_core *core, const char *function);
void inst_lock(struct msm_vidc_inst *inst, const char *function);

View File

@@ -15,8 +15,9 @@ struct msm_vidc_inst;
((c)->session_ops->op(__VA_ARGS__)) : 0)
struct msm_vidc_session_ops {
u64 (*calc_freq)(struct msm_vidc_inst *inst);
u64 (*calc_bw)(struct msm_vidc_inst *inst);
u64 (*calc_freq)(struct msm_vidc_inst *inst, u32 data_size);
int (*calc_bw)(struct msm_vidc_inst *inst,
struct vidc_bus_vote_data* vote_data);
int (*decide_work_route)(struct msm_vidc_inst *inst);
int (*decide_work_mode)(struct msm_vidc_inst *inst);
int (*decide_core_and_power_mode)(struct msm_vidc_inst *inst);
@@ -105,6 +106,8 @@ struct msm_vidc_inst {
enum msm_vidc_pipe_type pipe;
enum msm_vidc_quality_mode quality_mode;
struct msm_vidc_power power;
enum msm_vidc_modes flags;
struct vidc_bus_vote_data bus_data;
struct msm_vidc_buffers_info buffers;
struct msm_vidc_mappings_info mappings;
struct msm_vidc_allocations_info allocations;
@@ -126,6 +129,8 @@ struct msm_vidc_inst {
struct msm_vidc_debug debug;
struct msm_vidc_inst_capability *capabilities;
struct completion completions[MAX_SIGNAL];
bool active;
u64 last_qbuf_time_ns;
};
#endif // _MSM_VIDC_INST_H_

View File

@@ -80,6 +80,7 @@
#define BUFFER_ALIGNMENT_SIZE(x) x
#define NUM_MBS_720P (((1280 + 15) >> 4) * ((720 + 15) >> 4))
#define NUM_MBS_4k (((4096 + 15) >> 4) * ((2304 + 15) >> 4))
#define MB_SIZE_IN_PIXEL (16 * 16)
#define DB_H264_DISABLE_SLICE_BOUNDARY \
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY
@@ -554,6 +555,7 @@ struct msm_vidc_crop {
struct msm_vidc_properties {
u32 frame_rate;
u32 operating_rate;
u32 bitrate;
};
struct msm_vidc_subscription_params {
@@ -581,7 +583,48 @@ struct msm_vidc_decode_batch {
struct delayed_work work;
};
enum msm_vidc_modes {
VIDC_SECURE = BIT(0),
VIDC_TURBO = BIT(1),
VIDC_THUMBNAIL = BIT(2),
VIDC_LOW_POWER = BIT(3),
};
enum load_calc_quirks {
LOAD_POWER = 0,
LOAD_ADMISSION_CONTROL = 1,
};
enum msm_vidc_power_mode {
VIDC_POWER_NORMAL = 0,
VIDC_POWER_LOW,
VIDC_POWER_TURBO,
};
struct vidc_bus_vote_data {
enum msm_vidc_domain_type domain;
enum msm_vidc_codec_type codec;
enum msm_vidc_power_mode power_mode;
u32 color_formats[2];
int num_formats; /* 1 = DPB-OPB unified; 2 = split */
int input_height, input_width, bitrate;
int output_height, output_width;
int rotation;
int compression_ratio;
int complexity_factor;
int input_cr;
u32 lcu_size;
u32 fps;
u32 work_mode;
bool use_sys_cache;
bool b_frames_enabled;
u64 calc_bw_ddr;
u64 calc_bw_llcc;
u32 num_vpp_pipes;
};
struct msm_vidc_power {
enum msm_vidc_power_mode power_mode;
u32 buffer_counter;
u32 min_threshold;
u32 nom_threshold;

View File

@@ -6,8 +6,249 @@
#ifndef _MSM_VIDC_POWER_H_
#define _MSM_VIDC_POWER_H_
#include "fixedpoint.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_internal.h"
#include "msm_vidc_inst.h"
int msm_vidc_scale_power(struct msm_vidc_inst *inst);
#define COMPRESSION_RATIO_MAX 5
enum vidc_bus_type {
PERF,
DDR,
LLCC,
};
/*
* Minimum dimensions for which to calculate bandwidth.
* This means that anything bandwidth(0, 0) ==
* bandwidth(BASELINE_DIMENSIONS.width, BASELINE_DIMENSIONS.height)
*/
static const struct {
int height, width;
} BASELINE_DIMENSIONS = {
.width = 1280,
.height = 720,
};
/* converts Mbps to bps (the "b" part can be bits or bytes based on context) */
#define kbps(__mbps) ((__mbps) * 1000)
#define bps(__mbps) (kbps(__mbps) * 1000)
#define GENERATE_COMPRESSION_PROFILE(__bpp, __worst) { \
.bpp = __bpp, \
.ratio = __worst, \
}
/*
* The below table is a structural representation of the following table:
* Resolution | Bitrate | Compression Ratio |
* ............|............|.........................................|
* Width Height|Average High|Avg_8bpc Worst_8bpc Avg_10bpc Worst_10bpc|
* 1280 720| 7 14| 1.69 1.28 1.49 1.23|
* 1920 1080| 20 40| 1.69 1.28 1.49 1.23|
* 2560 1440| 32 64| 2.2 1.26 1.97 1.22|
* 3840 2160| 42 84| 2.2 1.26 1.97 1.22|
* 4096 2160| 44 88| 2.2 1.26 1.97 1.22|
* 4096 2304| 48 96| 2.2 1.26 1.97 1.22|
*/
static struct lut {
int frame_size; /* width x height */
int frame_rate;
unsigned long bitrate;
struct {
int bpp;
fp_t ratio;
} compression_ratio[COMPRESSION_RATIO_MAX];
} const LUT[] = {
{
.frame_size = 1280 * 720,
.frame_rate = 30,
.bitrate = 14,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 28, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 23, 100)),
}
},
{
.frame_size = 1280 * 720,
.frame_rate = 60,
.bitrate = 22,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 28, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 23, 100)),
}
},
{
.frame_size = 1920 * 1088,
.frame_rate = 30,
.bitrate = 40,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 28, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 23, 100)),
}
},
{
.frame_size = 1920 * 1088,
.frame_rate = 60,
.bitrate = 64,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 28, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 23, 100)),
}
},
{
.frame_size = 2560 * 1440,
.frame_rate = 30,
.bitrate = 64,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 2560 * 1440,
.frame_rate = 60,
.bitrate = 102,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 3840 * 2160,
.frame_rate = 30,
.bitrate = 84,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 3840 * 2160,
.frame_rate = 60,
.bitrate = 134,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 4096 * 2160,
.frame_rate = 30,
.bitrate = 88,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 4096 * 2160,
.frame_rate = 60,
.bitrate = 141,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 4096 * 2304,
.frame_rate = 30,
.bitrate = 96,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
{
.frame_size = 4096 * 2304,
.frame_rate = 60,
.bitrate = 154,
.compression_ratio = {
GENERATE_COMPRESSION_PROFILE(8,
FP(1, 26, 100)),
GENERATE_COMPRESSION_PROFILE(10,
FP(1, 22, 100)),
}
},
};
static inline u32 get_type_frm_name(const char* name)
{
if (!strcmp(name, "venus-llcc"))
return LLCC;
else if (!strcmp(name, "venus-ddr"))
return DDR;
else
return PERF;
}
#define DUMP_HEADER_MAGIC 0xdeadbeef
#define DUMP_FP_FMT "%FP" /* special format for fp_t */
struct dump {
char* key;
char* format;
size_t val;
};
struct lut const* __lut(int width, int height, int fps);
fp_t __compression_ratio(struct lut const* entry, int bpp);
void __dump(struct dump dump[], int len);
static inline bool __ubwc(enum msm_vidc_colorformat_type f)
{
switch (f) {
case MSM_VIDC_FMT_NV12_UBWC:
case MSM_VIDC_FMT_NV12_TP10_UBWC:
return true;
default:
return false;
}
}
static inline int __bpp(enum msm_vidc_colorformat_type f)
{
switch (f) {
case MSM_VIDC_FMT_NV12:
case MSM_VIDC_FMT_NV21:
case MSM_VIDC_FMT_NV12_UBWC:
case MSM_VIDC_FMT_RGBA8888_UBWC:
return 8;
case MSM_VIDC_FMT_NV12_P010:
case MSM_VIDC_FMT_NV12_TP10_UBWC:
return 10;
default:
d_vpr_e("Unsupported colorformat (%x)", f);
return INT_MAX;
}
}
u64 msm_vidc_max_freq(struct msm_vidc_inst* inst);
int msm_vidc_get_inst_load(struct msm_vidc_inst* inst,
enum load_calc_quirks quirks);
int msm_vidc_scale_power(struct msm_vidc_inst *inst, bool scale_buses);
#endif

View File

@@ -67,7 +67,7 @@ int venus_hfi_core_init(struct msm_vidc_core *core);
int venus_hfi_core_release(struct msm_vidc_core *core);
int venus_hfi_suspend(struct msm_vidc_core *core);
int venus_hfi_scale_clocks(struct msm_vidc_inst* inst, u64 freq);
int venus_hfi_scale_buses(struct msm_vidc_inst* inst, u64 freq);
int venus_hfi_scale_buses(struct msm_vidc_inst* inst, u64 bw_ddr, u64 bw_llcc);
void venus_hfi_work_handler(struct work_struct *work);
void venus_hfi_pm_work_handler(struct work_struct *work);

View File

@@ -1239,7 +1239,7 @@ int msm_vdec_start_input(struct msm_vidc_inst *inst)
if (rc)
return rc;
rc = venus_hfi_start(inst, INPUT_PORT);
rc = msm_vidc_session_start(inst, INPUT_PORT);
if (rc)
goto error;
@@ -1407,7 +1407,7 @@ int msm_vdec_start_output(struct msm_vidc_inst *inst)
if (rc)
return rc;
rc = venus_hfi_start(inst, OUTPUT_PORT);
rc = msm_vidc_session_start(inst, OUTPUT_PORT);
if (rc)
goto error;

View File

@@ -772,7 +772,7 @@ int msm_venc_start_input(struct msm_vidc_inst *inst)
if (rc)
return rc;
rc = venus_hfi_start(inst, INPUT_PORT);
rc = msm_vidc_session_start(inst, INPUT_PORT);
if (rc)
goto error;
@@ -860,7 +860,7 @@ int msm_venc_start_output(struct msm_vidc_inst *inst)
if (rc)
return rc;
rc = venus_hfi_start(inst, OUTPUT_PORT);
rc = msm_vidc_session_start(inst, OUTPUT_PORT);
if (rc)
goto error;

View File

@@ -14,6 +14,7 @@
#include "msm_vidc_v4l2.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_control.h"
#include "msm_vidc_power.h"
#define MSM_VIDC_DRV_NAME "msm_vidc_driver"
/* kernel/msm-4.19 */
@@ -801,6 +802,7 @@ void *msm_vidc_open(void *vidc_core, u32 session_type)
INIT_LIST_HEAD(&inst->firmware.list);
inst->domain = session_type;
inst->state = MSM_VIDC_OPEN;
inst->active = true;
inst->request = false;
inst->ipsc_properties_set = false;
inst->opsc_properties_set = false;
@@ -828,8 +830,8 @@ void *msm_vidc_open(void *vidc_core, u32 session_type)
if (rc)
goto error;
//msm_power_setup(inst);
// send cmd to firmware here
msm_vidc_scale_power(inst, true);
rc = msm_vidc_session_open(inst);
if (rc)
goto error;

View File

@@ -11,10 +11,7 @@
#include "msm_vidc_debug.h"
#include "msm_vidc_internal.h"
#define MIN_INPUT_BUFFERS 4
#define MIN_ENC_OUTPUT_BUFFERS 4
u32 msm_vidc_input_min_count(struct msm_vidc_inst *inst)
u32 msm_vidc_input_min_count(struct msm_vidc_inst* inst)
{
u32 input_min_count = 0;
//struct v4l2_ctrl *max_layer = NULL;
@@ -24,10 +21,15 @@ u32 msm_vidc_input_min_count(struct msm_vidc_inst *inst)
return 0;
}
if (!is_decode_session(inst) && !is_encode_session(inst))
if (is_decode_session(inst)) {
input_min_count = MIN_DEC_INPUT_BUFFERS;
} else if (is_encode_session(inst)) {
input_min_count = MIN_ENC_INPUT_BUFFERS;
} else {
s_vpr_e(inst->sid, "%s: invalid domain\n",
__func__, inst->domain);
return 0;
input_min_count = MIN_INPUT_BUFFERS;
}
if (is_thumbnail_session(inst))
input_min_count = 1;
@@ -90,7 +92,7 @@ u32 msm_vidc_output_min_count(struct msm_vidc_inst *inst)
u32 msm_vidc_input_extra_count(struct msm_vidc_inst *inst)
{
u32 extra_input_count = 0;
u32 count = 0;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
@@ -99,23 +101,36 @@ u32 msm_vidc_input_extra_count(struct msm_vidc_inst *inst)
}
core = inst->core;
/*
* no extra buffers for thumbnail session because
* neither dcvs nor batching will be enabled
*/
if (is_thumbnail_session(inst))
return extra_input_count;
return 0;
if (is_decode_session(inst)) {
/* add dcvs buffers */
/* add batching buffers */
extra_input_count = 6;
/*
* if decode batching enabled, ensure minimum batch size
* count of input buffers present on input port
*/
if (core->capabilities[DECODE_BATCH].value &&
inst->decode_batch.enable) {
if (inst->buffers.input.min_count < inst->decode_batch.size) {
count = inst->decode_batch.size -
inst->buffers.input.min_count;
}
}
} else if (is_encode_session(inst)) {
/* add dcvs buffers */
extra_input_count = 4;
count = DCVS_ENC_EXTRA_INPUT_BUFFERS;
}
return extra_input_count;
return count;
}
u32 msm_vidc_output_extra_count(struct msm_vidc_inst *inst)
{
u32 extra_output_count = 0;
u32 count = 0;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
@@ -124,24 +139,94 @@ u32 msm_vidc_output_extra_count(struct msm_vidc_inst *inst)
}
core = inst->core;
/*
* no extra buffers for thumbnail session because
* neither dcvs nor batching will be enabled
*/
if (is_thumbnail_session(inst))
return 0;
if (is_decode_session(inst)) {
/* add dcvs buffers */
/* add batching buffers */
extra_output_count = 6;
count = DCVS_DEC_EXTRA_OUTPUT_BUFFERS;
/*
* if decode batching enabled, ensure minimum batch size
* count of extra output buffers added on output port
*/
if (core->capabilities[DECODE_BATCH].value &&
inst->decode_batch.enable &&
count < inst->decode_batch.size)
count = inst->decode_batch.size;
} else if (is_encode_session(inst)) {
/* add heif buffers */
//extra_output_count = 8
//count = 8
}
return extra_output_count;
return count;
}
u32 msm_vidc_decoder_input_size(struct msm_vidc_inst *inst)
{
u32 size = ALIGN(1 * 1024 * 1024, SZ_4K);
return size;
u32 frame_size, num_mbs;
u32 div_factor = 1;
u32 base_res_mbs = NUM_MBS_4k;
struct v4l2_format *f;
u32 buffer_size_limit = 0; // TODO: fix me
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n");
return 0;
}
/*
* Decoder input size calculation:
* For 8k resolution, buffer size is calculated as 8k mbs / 4 and
* for 8k cases we expect width/height to be set always.
* In all other cases, buffer size is calculated as
* 4k mbs for VP8/VP9 and 4k / 2 for remaining codecs.
*/
f = &inst->fmts[INPUT_PORT];
num_mbs = msm_vidc_get_mbs_per_frame(inst);
if (num_mbs > NUM_MBS_4k) {
div_factor = 4;
base_res_mbs = inst->capabilities->cap[MBPF].value;
} else {
base_res_mbs = NUM_MBS_4k;
if (f->fmt.pix_mp.pixelformat == V4L2_PIX_FMT_VP9)
div_factor = 1;
else
div_factor = 2;
}
if (is_secure_session(inst))
div_factor = div_factor << 1;
/* For HEIF image, use the actual resolution to calc buffer size */
/* TODO: fix me
if (is_heif_decoder(inst)) {
base_res_mbs = num_mbs;
div_factor = 1;
}
*/
frame_size = base_res_mbs * MB_SIZE_IN_PIXEL * 3 / 2 / div_factor;
/* multiply by 10/8 (1.25) to get size for 10 bit case */
if (f->fmt.pix_mp.pixelformat == V4L2_PIX_FMT_VP9 ||
f->fmt.pix_mp.pixelformat == V4L2_PIX_FMT_HEVC)
frame_size = frame_size + (frame_size >> 2);
if (buffer_size_limit && (buffer_size_limit < frame_size)) {
frame_size = buffer_size_limit;
s_vpr_h(inst->sid, "input buffer size limited to %d\n",
frame_size);
} else {
s_vpr_h(inst->sid, "set input buffer size to %d\n",
frame_size);
}
return ALIGN(frame_size, SZ_4K);
}
u32 msm_vidc_decoder_output_size(struct msm_vidc_inst *inst)

View File

@@ -15,3 +15,6 @@ EXPORT_SYMBOL(msm_vidc_lossless_encode);
bool msm_vidc_syscache_disable = !true;
EXPORT_SYMBOL(msm_vidc_syscache_disable);
int msm_vidc_clock_voting = !1;

View File

@@ -13,6 +13,7 @@
#include "msm_vidc_internal.h"
#include "msm_vidc_memory.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_power.h"
#include "venus_hfi.h"
#include "msm_vidc.h"
@@ -464,6 +465,65 @@ int msm_vidc_get_control(struct msm_vidc_inst *inst, struct v4l2_ctrl *ctrl)
return rc;
}
int msm_vidc_get_mbs_per_frame(struct msm_vidc_inst *inst)
{
int height, width;
struct v4l2_format *out_f;
struct v4l2_format *inp_f;
out_f = &inst->fmts[OUTPUT_PORT];
inp_f = &inst->fmts[INPUT_PORT];
height = max(out_f->fmt.pix_mp.height,
inp_f->fmt.pix_mp.height);
width = max(out_f->fmt.pix_mp.width,
inp_f->fmt.pix_mp.width);
return NUM_MBS_PER_FRAME(height, width);
}
int msm_vidc_get_fps(struct msm_vidc_inst *inst)
{
int fps;
if (inst->prop.operating_rate > inst->prop.frame_rate)
fps = (inst->prop.operating_rate >> 16) ?
(inst->prop.operating_rate >> 16) : 1;
else
fps = inst->prop.frame_rate >> 16;
return fps;
}
int msm_vidc_num_queued_bufs(struct msm_vidc_inst *inst, u32 type)
{
int count = 0;
struct msm_vidc_buffer *vbuf;
struct msm_vidc_buffers* buffers;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return 0;
}
if (type == OUTPUT_MPLANE) {
buffers = &inst->buffers.output;
} else if (type == INPUT_MPLANE) {
buffers = &inst->buffers.input;
} else {
s_vpr_e(inst->sid, "%s: invalid buffer type %#x\n", __func__, type);
return -EINVAL;
}
list_for_each_entry(vbuf, &buffers->list, list) {
if (vbuf->type != type)
continue;
if (!(vbuf->attr & MSM_VIDC_ATTR_QUEUED))
continue;
count++;
}
return count;
}
static int vb2_buffer_to_driver(struct vb2_buffer *vb2,
struct msm_vidc_buffer *buf)
{
@@ -1264,6 +1324,25 @@ int msm_vidc_session_set_codec(struct msm_vidc_inst *inst)
return 0;
}
int msm_vidc_session_start(struct msm_vidc_inst* inst,
enum msm_vidc_port_type port)
{
int rc = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_scale_power(inst, true);
rc = venus_hfi_start(inst, port);
if (rc)
return rc;
return rc;
}
int msm_vidc_session_stop(struct msm_vidc_inst *inst,
enum msm_vidc_port_type port)
{

View File

@@ -8,29 +8,577 @@
#include "msm_vidc_internal.h"
#include "msm_vidc_inst.h"
#include "msm_vidc_core.h"
#include "msm_vidc_dt.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_platform.h"
#include "msm_vidc_buffer.h"
#include "venus_hfi.h"
int msm_vidc_scale_power(struct msm_vidc_inst *inst)
#define MSM_VIDC_MIN_UBWC_COMPLEXITY_FACTOR (1 << 16)
#define MSM_VIDC_MAX_UBWC_COMPLEXITY_FACTOR (4 << 16)
#define MSM_VIDC_MIN_UBWC_COMPRESSION_RATIO (1 << 16)
#define MSM_VIDC_MAX_UBWC_COMPRESSION_RATIO (5 << 16)
u64 msm_vidc_max_freq(struct msm_vidc_inst *inst)
{
int rc = 0;
u64 freq;
struct msm_vidc_core* core;
struct allowed_clock_rates_table *allowed_clks_tbl;
u64 freq = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params %pK\n", __func__, inst);
d_vpr_e("%s: invalid params\n", __func__);
return freq;
}
core = inst->core;
if (!core->dt || !core->dt->allowed_clks_tbl) {
s_vpr_e(inst->sid, "%s: invalid params\n", __func__);
return freq;
}
allowed_clks_tbl = core->dt->allowed_clks_tbl;
freq = allowed_clks_tbl[0].clock_rate;
s_vpr_l(inst->sid, "%s: rate = %lu\n", __func__, freq);
return freq;
}
static int msm_vidc_get_mbps(struct msm_vidc_inst *inst,
enum load_calc_quirks quirks)
{
int input_port_mbs, output_port_mbs;
int fps;
struct v4l2_format *f;
f = &inst->fmts[INPUT_PORT];
input_port_mbs = NUM_MBS_PER_FRAME(f->fmt.pix_mp.width,
f->fmt.pix_mp.height);
f = &inst->fmts[OUTPUT_PORT];
output_port_mbs = NUM_MBS_PER_FRAME(f->fmt.pix_mp.width,
f->fmt.pix_mp.height);
fps = inst->prop.frame_rate;
/* For admission control operating rate is ignored */
if (quirks == LOAD_POWER)
fps = max(inst->prop.operating_rate, inst->prop.frame_rate);
/* In case of fps < 1 we assume 1 */
fps = max(fps >> 16, 1);
return max(input_port_mbs, output_port_mbs) * fps;
}
int msm_vidc_get_inst_load(struct msm_vidc_inst *inst,
enum load_calc_quirks quirks)
{
int load = 0;
if (inst->state == MSM_VIDC_OPEN ||
inst->state == MSM_VIDC_ERROR)
goto exit;
/*
* Clock and Load calculations for REALTIME/NON-REALTIME
* Operating rate will either Default or Client value.
* Session admission control will be based on Load.
* Power requests based of calculated Clock/Freq.
* ----------------|----------------------------|
* REALTIME | Admission Control Load = |
* | res * fps |
* | Power Request Load = |
* | res * max(op, fps)|
* ----------------|----------------------------|
* NON-REALTIME/ | Admission Control Load = 0 |
* THUMBNAIL | Power Request Load = |
* | res * max(op, fps)|
* ----------------|----------------------------|
*/
if (is_thumbnail_session(inst) ||
(!is_realtime_session(inst) &&
quirks == LOAD_ADMISSION_CONTROL)) {
load = 0;
} else {
load = msm_vidc_get_mbps(inst, quirks);
}
exit:
return load;
}
static int fill_dynamic_stats(struct msm_vidc_inst *inst,
struct vidc_bus_vote_data *vote_data)
{
u32 max_cr = MSM_VIDC_MIN_UBWC_COMPRESSION_RATIO;
u32 max_cf = MSM_VIDC_MIN_UBWC_COMPLEXITY_FACTOR;
u32 max_input_cr = MSM_VIDC_MIN_UBWC_COMPRESSION_RATIO;
u32 min_cf = MSM_VIDC_MAX_UBWC_COMPLEXITY_FACTOR;
u32 min_input_cr = MSM_VIDC_MAX_UBWC_COMPRESSION_RATIO;
u32 min_cr = MSM_VIDC_MAX_UBWC_COMPRESSION_RATIO;
/* TODO: get ubwc stats from firmware
if (inst->core->resources.ubwc_stats_in_fbd == 1) {
mutex_lock(&inst->ubwc_stats_lock);
if (inst->ubwc_stats.is_valid == 1) {
min_cr = inst->ubwc_stats.worst_cr;
max_cf = inst->ubwc_stats.worst_cf;
min_input_cr = inst->ubwc_stats.worst_cr;
}
mutex_unlock(&inst->ubwc_stats_lock);
}
*/
/* Sanitize CF values from HW */
max_cf = min_t(u32, max_cf, MSM_VIDC_MAX_UBWC_COMPLEXITY_FACTOR);
min_cf = max_t(u32, min_cf, MSM_VIDC_MIN_UBWC_COMPLEXITY_FACTOR);
max_cr = min_t(u32, max_cr, MSM_VIDC_MAX_UBWC_COMPRESSION_RATIO);
min_cr = max_t(u32, min_cr, MSM_VIDC_MIN_UBWC_COMPRESSION_RATIO);
max_input_cr = min_t(u32,
max_input_cr, MSM_VIDC_MAX_UBWC_COMPRESSION_RATIO);
min_input_cr = max_t(u32,
min_input_cr, MSM_VIDC_MIN_UBWC_COMPRESSION_RATIO);
vote_data->compression_ratio = min_cr;
vote_data->complexity_factor = max_cf;
vote_data->input_cr = min_input_cr;
s_vpr_l(inst->sid,
"Input CR = %d Recon CR = %d Complexity Factor = %d\n",
vote_data->input_cr, vote_data->compression_ratio,
vote_data->complexity_factor);
return 0;
}
static int msm_vidc_set_buses(struct msm_vidc_inst* inst)
{
int rc = 0;
struct msm_vidc_core* core;
struct msm_vidc_inst* temp;
u64 total_bw_ddr = 0, total_bw_llcc = 0;
u64 curr_time_ns;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
freq = call_session_op(core, calc_freq, inst);
rc = venus_hfi_scale_clocks(inst, freq);
if (rc)
return rc;
mutex_lock(&core->lock);
curr_time_ns = ktime_get_ns();
list_for_each_entry(temp, &core->instances, list) {
struct msm_vidc_buffer *vbuf, *next;
u32 data_size = 0;
freq = call_session_op(core, calc_bw, inst);
rc = venus_hfi_scale_buses(inst, freq);
/* TODO: accessing temp without lock */
list_for_each_entry_safe(vbuf, next, &temp->buffers.input.list, list)
data_size = max(data_size, vbuf->data_size);
if (!data_size)
continue;
/* skip inactive session bus bandwidth */
if (!is_active_session(temp->last_qbuf_time_ns, curr_time_ns)) {
temp->active = false;
continue;
}
if (temp->bus_data.power_mode == VIDC_POWER_TURBO) {
total_bw_ddr = total_bw_llcc = INT_MAX;
break;
}
total_bw_ddr += temp->bus_data.calc_bw_ddr;
total_bw_llcc += temp->bus_data.calc_bw_llcc;
}
mutex_unlock(&core->lock);
rc = venus_hfi_scale_buses(inst, total_bw_ddr, total_bw_llcc);
if (rc)
return rc;
return 0;
}
int msm_vidc_scale_buses(struct msm_vidc_inst *inst)
{
int rc = 0;
struct msm_vidc_core *core;
struct vidc_bus_vote_data *vote_data;
struct v4l2_format *out_f;
struct v4l2_format *inp_f;
struct msm_vidc_buffer *vbuf;
u32 data_size = 0;
int codec = 0;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params: %pK\n", __func__, inst);
return -EINVAL;
}
core = inst->core;
if (!core->dt) {
d_vpr_e("%s: invalid dt params\n", __func__);
return -EINVAL;
}
vote_data = &inst->bus_data;
list_for_each_entry(vbuf, &inst->buffers.input.list, list)
data_size = max(data_size, vbuf->data_size);
if (!data_size)
return 0;
vote_data->power_mode = VIDC_POWER_NORMAL;
if (inst->power.buffer_counter < DCVS_FTB_WINDOW)
vote_data->power_mode = VIDC_POWER_TURBO;
if (msm_vidc_clock_voting)
vote_data->power_mode = VIDC_POWER_TURBO;
if (vote_data->power_mode == VIDC_POWER_TURBO)
goto set_buses;
out_f = &inst->fmts[OUTPUT_PORT];
inp_f = &inst->fmts[INPUT_PORT];
switch (inst->domain) {
case MSM_VIDC_DECODER:
codec = inp_f->fmt.pix_mp.pixelformat;
break;
case MSM_VIDC_ENCODER:
codec = out_f->fmt.pix_mp.pixelformat;
break;
default:
s_vpr_e(inst->sid, "%s: invalid session_type %#x\n",
__func__, inst->domain);
break;
}
vote_data->codec = inst->codec;
vote_data->input_width = inp_f->fmt.pix_mp.width;
vote_data->input_height = inp_f->fmt.pix_mp.height;
vote_data->output_width = out_f->fmt.pix_mp.width;
vote_data->output_height = out_f->fmt.pix_mp.height;
vote_data->lcu_size = (codec == V4L2_PIX_FMT_HEVC ||
codec == V4L2_PIX_FMT_VP9) ? 32 : 16;
vote_data->fps = msm_vidc_get_fps(inst);
if (inst->domain == MSM_VIDC_ENCODER) {
vote_data->bitrate = inst->capabilities->cap[BIT_RATE].value;
vote_data->rotation = inst->capabilities->cap[ROTATION].value;
vote_data->b_frames_enabled =
inst->capabilities->cap[B_FRAME].value > 0;
/* scale bitrate if operating rate is larger than fps */
if (vote_data->fps > (inst->prop.frame_rate >> 16) &&
(inst->prop.frame_rate >> 16)) {
vote_data->bitrate = vote_data->bitrate /
(inst->prop.frame_rate >> 16) * vote_data->fps;
}
vote_data->num_formats = 1;
vote_data->color_formats[0] = v4l2_colorformat_to_driver(
inst->fmts[INPUT_PORT].fmt.pix_mp.pixelformat, __func__);
} else if (inst->domain == MSM_VIDC_DECODER) {
u32 color_format;
vote_data->bitrate = data_size * vote_data->fps * 8;
color_format = v4l2_colorformat_to_driver(
inst->fmts[OUTPUT_PORT].fmt.pix_mp.pixelformat, __func__);
if (is_linear_colorformat(color_format)) {
vote_data->num_formats = 2;
/*
* 0 index - dpb colorformat
* 1 index - opb colorformat
*/
if (is_10bit_colorformat(color_format)) {
vote_data->color_formats[0] = MSM_VIDC_FMT_NV12_TP10_UBWC;
} else {
vote_data->color_formats[0] = MSM_VIDC_FMT_NV12;
}
vote_data->color_formats[0] = color_format;
} else {
vote_data->num_formats = 1;
vote_data->color_formats[0] = color_format;
}
}
vote_data->work_mode = inst->stage;
if (core->dt->sys_cache_res_set)
vote_data->use_sys_cache = true;
vote_data->num_vpp_pipes = core->capabilities[NUM_VPP_PIPE].value;
fill_dynamic_stats(inst, vote_data);
call_session_op(core, calc_bw, inst, vote_data);
set_buses:
rc = msm_vidc_set_buses(inst);
if (rc)
return rc;
return 0;
}
int msm_vidc_set_clocks(struct msm_vidc_inst* inst)
{
int rc = 0;
struct msm_vidc_core* core;
struct msm_vidc_inst* temp;
u64 freq, rate;
u32 data_size;
bool increment, decrement;
u64 curr_time_ns;
int i = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->dt || !core->dt->allowed_clks_tbl) {
d_vpr_e("%s: invalid dt params\n", __func__);
return -EINVAL;
}
mutex_lock(&core->lock);
increment = false;
decrement = true;
freq = 0;
curr_time_ns = ktime_get_ns();
list_for_each_entry(temp, &core->instances, list) {
struct msm_vidc_buffer* vbuf, *next;
data_size = 0;
list_for_each_entry_safe(vbuf, next, &temp->buffers.input.list, list)
data_size = max(data_size, vbuf->data_size);
if (!data_size)
continue;
/* skip inactive session clock rate */
if (!is_active_session(temp->last_qbuf_time_ns, curr_time_ns)) {
temp->active = false;
continue;
}
freq += temp->power.min_freq;
if (msm_vidc_clock_voting) {
d_vpr_l("msm_vidc_clock_voting %d\n", msm_vidc_clock_voting);
freq = msm_vidc_clock_voting;
decrement = false;
break;
}
/* increment even if one session requested for it */
if (temp->power.dcvs_flags & MSM_VIDC_DCVS_INCR)
increment = true;
/* decrement only if all sessions requested for it */
if (!(temp->power.dcvs_flags & MSM_VIDC_DCVS_DECR))
decrement = false;
}
/*
* keep checking from lowest to highest rate until
* table rate >= requested rate
*/
for (i = core->dt->allowed_clks_tbl_size - 1; i >= 0; i--) {
rate = core->dt->allowed_clks_tbl[i].clock_rate;
if (rate >= freq)
break;
}
if (i < 0)
i = 0;
if (increment) {
if (i > 0)
rate = core->dt->allowed_clks_tbl[i - 1].clock_rate;
} else if (decrement) {
if (i < (int) (core->dt->allowed_clks_tbl_size - 1))
rate = core->dt->allowed_clks_tbl[i + 1].clock_rate;
}
core->power.clk_freq = (u32)rate;
d_vpr_p("%s: clock rate %lu requested %lu increment %d decrement %d\n",
__func__, rate, freq, increment, decrement);
mutex_unlock(&core->lock);
rc = venus_hfi_scale_clocks(inst, rate);
if (rc)
return rc;
return 0;
}
static int msm_vidc_apply_dcvs(struct msm_vidc_inst *inst)
{
int rc = 0;
int bufs_with_fw = 0;
struct msm_vidc_power *power;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params %pK\n", __func__, inst);
return -EINVAL;
}
if (!inst->power.dcvs_mode || inst->decode_batch.enable) {
s_vpr_l(inst->sid, "Skip DCVS (dcvs %d, batching %d)\n",
inst->power.dcvs_mode, inst->decode_batch.enable);
inst->power.dcvs_flags = 0;
return 0;
}
power = &inst->power;
if (is_decode_session(inst)) {
bufs_with_fw = msm_vidc_num_queued_bufs(inst, OUTPUT_MPLANE);
} else {
bufs_with_fw = msm_vidc_num_queued_bufs(inst, INPUT_MPLANE);
}
/* +1 as one buffer is going to be queued after the function */
bufs_with_fw += 1;
/*
* DCVS decides clock level based on below algorithm
*
* Limits :
* min_threshold : Buffers required for reference by FW.
* nom_threshold : Midpoint of Min and Max thresholds
* max_threshold : Min Threshold + DCVS extra buffers, allocated
* for smooth flow.
* 1) When buffers outside FW are reaching client's extra buffers,
* FW is slow and will impact pipeline, Increase clock.
* 2) When pending buffers with FW are less than FW requested,
* pipeline has cushion to absorb FW slowness, Decrease clocks.
* 3) When DCVS has engaged(Inc or Dec) and pending buffers with FW
* transitions past the nom_threshold, switch to calculated load.
* This smoothens the clock transitions.
* 4) Otherwise maintain previous Load config.
*/
if (bufs_with_fw >= power->max_threshold) {
power->dcvs_flags = MSM_VIDC_DCVS_INCR;
} else if (bufs_with_fw < power->min_threshold) {
power->dcvs_flags = MSM_VIDC_DCVS_DECR;
} else if ((power->dcvs_flags & MSM_VIDC_DCVS_DECR &&
bufs_with_fw >= power->nom_threshold) ||
(power->dcvs_flags & MSM_VIDC_DCVS_INCR &&
bufs_with_fw <= power->nom_threshold))
power->dcvs_flags = 0;
s_vpr_p(inst->sid, "DCVS: bufs_with_fw %d th[%d %d %d] flags %#x\n",
bufs_with_fw, power->min_threshold,
power->nom_threshold, power->max_threshold,
power->dcvs_flags);
return rc;
}
int msm_vidc_scale_clocks(struct msm_vidc_inst *inst)
{
struct msm_vidc_core* core;
struct msm_vidc_buffer *vbuf;
u32 data_size = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
list_for_each_entry(vbuf, &inst->buffers.input.list, list)
data_size = max(data_size, vbuf->data_size);
if (!data_size)
return 0;
if (inst->power.buffer_counter < DCVS_FTB_WINDOW ||
is_turbo_session(inst)) {
inst->power.min_freq = msm_vidc_max_freq(inst);
inst->power.dcvs_flags = 0;
} else if (msm_vidc_clock_voting) {
inst->power.min_freq = msm_vidc_clock_voting;
inst->power.dcvs_flags = 0;
} else {
inst->power.min_freq =
call_session_op(core, calc_freq, inst, data_size);
msm_vidc_apply_dcvs(inst);
}
msm_vidc_set_clocks(inst);
return 0;
}
int msm_vidc_scale_power(struct msm_vidc_inst *inst, bool scale_buses)
{
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params %pK\n", __func__, inst);
return -EINVAL;
}
if (!inst->active) {
/* scale buses for inactive -> active session */
scale_buses = true;
inst->active = true;
}
if (msm_vidc_scale_clocks(inst))
s_vpr_e(inst->sid, "failed to scale clock\n");
if (scale_buses) {
if (msm_vidc_scale_buses(inst))
s_vpr_e(inst->sid, "failed to scale bus\n");
}
return 0;
}
void msm_vidc_dcvs_data_reset(struct msm_vidc_inst *inst)
{
struct msm_vidc_power *dcvs;
u32 min_count, actual_count;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
dcvs = &inst->power;
if (inst->domain == MSM_VIDC_ENCODER) {
min_count = inst->buffers.input.min_count;
actual_count = inst->buffers.input.actual_count;
} else if (inst->domain == MSM_VIDC_DECODER) {
min_count = inst->buffers.output.min_count;
actual_count = inst->buffers.output.actual_count;
} else {
s_vpr_e(inst->sid, "%s: invalid domain type %d\n",
__func__, inst->domain);
return;
}
dcvs->min_threshold = min_count;
if (inst->domain == MSM_VIDC_ENCODER)
dcvs->max_threshold = min((min_count + DCVS_ENC_EXTRA_INPUT_BUFFERS),
actual_count);
else
dcvs->max_threshold = min((min_count + DCVS_DEC_EXTRA_OUTPUT_BUFFERS),
actual_count);
dcvs->dcvs_window =
dcvs->max_threshold < dcvs->min_threshold ? 0 :
dcvs->max_threshold - dcvs->min_threshold;
dcvs->nom_threshold = dcvs->min_threshold +
(dcvs->dcvs_window ?
(dcvs->dcvs_window / 2) : 0);
dcvs->dcvs_flags = 0;
s_vpr_p(inst->sid, "%s: DCVS: thresholds [%d %d %d] flags %#x\n",
__func__, dcvs->min_threshold,
dcvs->nom_threshold, dcvs->max_threshold,
dcvs->dcvs_flags);
}
void msm_vidc_power_data_reset(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
s_vpr_h(inst->sid, "%s\n", __func__);
msm_vidc_dcvs_data_reset(inst);
inst->power.buffer_counter = 0;
//inst->ubwc_stats.is_valid = 0; TODO: fix it
rc = msm_vidc_scale_power(inst, true);
if (rc)
s_vpr_e(inst->sid, "%s: failed to scale power\n", __func__);
}

View File

@@ -6,6 +6,7 @@
#include "msm_vidc_vb2.h"
#include "msm_vidc_core.h"
#include "msm_vidc_inst.h"
#include "msm_vidc_internal.h"
#include "msm_vidc_driver.h"
#include "msm_vdec.h"
#include "msm_venc.h"

View File

@@ -20,7 +20,7 @@
#include "venus_hfi.h"
#include "msm_vidc_core.h"
#include "msm_vidc_bus.h"
#include "msm_vidc_power.h"
#include "msm_vidc_dt.h"
#include "msm_vidc_platform.h"
#include "msm_vidc_memory.h"
@@ -2995,7 +2995,7 @@ exit:
return rc;
}
int venus_hfi_scale_buses(struct msm_vidc_inst *inst, u64 freq)
int venus_hfi_scale_buses(struct msm_vidc_inst *inst, u64 bw_ddr, u64 bw_llcc)
{
int rc = 0;
struct msm_vidc_core* core;
@@ -3007,7 +3007,7 @@ int venus_hfi_scale_buses(struct msm_vidc_inst *inst, u64 freq)
core = inst->core;
mutex_lock(&core->lock);
rc = __vote_buses(core, freq, freq);
rc = __vote_buses(core, bw_ddr, bw_llcc);
mutex_unlock(&core->lock);
return rc;