qcacmn: Move scoring logic to connection manager

Move bss scoring logic to connection manager.

Change-Id: If8484ec2fa8b3e2d153ae4a6caed76f3354b8965
CRs-Fixed: 2707106
This commit is contained in:
gaurank kathpalia
2020-05-29 03:28:42 +05:30
committed by nshrivas
parent e85e67ce9b
commit 506f49a0ff
18 changed files with 2612 additions and 1262 deletions

View File

@@ -24,6 +24,7 @@
#define __CFG_CONVERGED_H
#include <wlan_scan_cfg.h>
#include "cfg_mlme_score_params.h"
#include "cfg_dp.h"
#include "cfg_hif.h"
#include <wlan_extscan_cfg.h>
@@ -52,8 +53,8 @@
CFG_SPECTRAL_ALL \
CFG_HIF \
CFG_DCS_ALL \
CFG_CFR_ALL
CFG_CFR_ALL \
CFG_MLME_SCORE_ALL
#endif /* __CFG_CONVERGED_H */

View File

@@ -25,6 +25,7 @@
#include <wlan_ftm_init_deinit_api.h>
#include <wlan_mgmt_txrx_utils_api.h>
#include <wlan_serialization_api.h>
#include "wlan_psoc_mlme_api.h"
#include <include/wlan_mlme_cmn.h>
#ifdef WLAN_ATF_ENABLE
#include <wlan_atf_utils_api.h>
@@ -1148,8 +1149,13 @@ QDF_STATUS dispatcher_psoc_open(struct wlan_objmgr_psoc *psoc)
if (status != QDF_STATUS_SUCCESS && status != QDF_STATUS_COMP_DISABLED)
goto spectral_psoc_open_fail;
if (QDF_IS_STATUS_ERROR(mlme_psoc_open(psoc)))
goto mlme_psoc_open_fail;
return QDF_STATUS_SUCCESS;
mlme_psoc_open_fail:
spectral_psoc_close(psoc);
spectral_psoc_open_fail:
dcs_psoc_close(psoc);
dcs_psoc_open_fail:
@@ -1178,6 +1184,8 @@ QDF_STATUS dispatcher_psoc_close(struct wlan_objmgr_psoc *psoc)
{
QDF_STATUS status;
QDF_BUG(QDF_STATUS_SUCCESS == mlme_psoc_close(psoc));
QDF_BUG(QDF_STATUS_SUCCESS == dcs_psoc_close(psoc));
QDF_BUG(QDF_STATUS_SUCCESS == dispatcher_coex_psoc_close(psoc));

View File

@@ -118,6 +118,16 @@ typedef __qdf_wait_queue_head_t qdf_wait_queue_head_t;
(_a)[4] == 0xff && \
(_a)[5] == 0xff)
/* Get number of bits from the index bit */
#define QDF_GET_BITS(_val, _index, _num_bits) \
(((_val) >> (_index)) & ((1 << (_num_bits)) - 1))
/* Set val to number of bits from the index bit */
#define QDF_SET_BITS(_var, _index, _num_bits, _val) do { \
(_var) &= ~(((1 << (_num_bits)) - 1) << (_index)); \
(_var) |= (((_val) & ((1 << (_num_bits)) - 1)) << (_index)); \
} while (0)
#define QDF_DECLARE_EWMA(name, factor, weight) \
__QDF_DECLARE_EWMA(name, factor, weight)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,175 @@
/*
* Copyright (c) 2020, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Define bss scoring structures and APIs
*/
#ifndef _WLAN_CM_BSS_SCORE_H
#define _WLAN_CM_BSS_SCORE_H
#include <wlan_scan_utils_api.h>
#include "wlan_reg_services_api.h"
/**
* struct weight_cfg - weight params to calculate best candidate
* @rssi_weightage: RSSI weightage
* @ht_caps_weightage: HT caps weightage
* @vht_caps_weightage: VHT caps weightage
* @he_caps_weightage: HE caps weightage
* @chan_width_weightage: Channel width weightage
* @chan_band_weightage: Channel band weightage
* @nss_weightage: NSS weightage
* @beamforming_cap_weightage: Beamforming caps weightage
* @pcl_weightage: PCL weightage
* @channel_congestion_weightage: channel congestion weightage
* @oce_wan_weightage: OCE WAN metrics weightage
* @oce_ap_tx_pwr_weightage: OCE AP tx power weigtage
* @oce_subnet_id_weightage: OCE subnet id weigtage
*/
struct weight_cfg {
uint8_t rssi_weightage;
uint8_t ht_caps_weightage;
uint8_t vht_caps_weightage;
uint8_t he_caps_weightage;
uint8_t chan_width_weightage;
uint8_t chan_band_weightage;
uint8_t nss_weightage;
uint8_t beamforming_cap_weightage;
uint8_t pcl_weightage;
uint8_t channel_congestion_weightage;
uint8_t oce_wan_weightage;
uint8_t oce_ap_tx_pwr_weightage;
uint8_t oce_subnet_id_weightage;
};
/**
* struct rssi_config_score - rssi related params for scoring logic
* @best_rssi_threshold: RSSI weightage
* @good_rssi_threshold: HT caps weightage
* @bad_rssi_threshold: VHT caps weightage
* @good_rssi_pcnt: HE caps weightage
* @bad_rssi_pcnt: Channel width weightage
* @good_rssi_bucket_size: Channel band weightage
* @bad_rssi_bucket_size: NSS weightage
* @rssi_pref_5g_rssi_thresh: Beamforming caps weightage
*/
struct rssi_config_score {
uint32_t best_rssi_threshold;
uint32_t good_rssi_threshold;
uint32_t bad_rssi_threshold;
uint32_t good_rssi_pcnt;
uint32_t bad_rssi_pcnt;
uint32_t good_rssi_bucket_size;
uint32_t bad_rssi_bucket_size;
uint32_t rssi_pref_5g_rssi_thresh;
};
/**
* struct per_slot_score - define % score for differents slots for a
* scoring param.
* num_slot: number of slots in which the param will be divided.
* Max 15. index 0 is used for 'not_present. Num_slot will
* equally divide 100. e.g, if num_slot = 4 slot 0 = 0-25%, slot
* 1 = 26-50% slot 2 = 51-75%, slot 3 = 76-100%
* score_pcnt3_to_0: Conatins score percentage for slot 0-3
* BITS 0-7 :- the scoring pcnt when not present
* BITS 8-15 :- SLOT_1
* BITS 16-23 :- SLOT_2
* BITS 24-31 :- SLOT_3
* score_pcnt7_to_4: Conatins score percentage for slot 4-7
* BITS 0-7 :- SLOT_4
* BITS 8-15 :- SLOT_5
* BITS 16-23 :- SLOT_6
* BITS 24-31 :- SLOT_7
* score_pcnt11_to_8: Conatins score percentage for slot 8-11
* BITS 0-7 :- SLOT_8
* BITS 8-15 :- SLOT_9
* BITS 16-23 :- SLOT_10
* BITS 24-31 :- SLOT_11
* score_pcnt15_to_12: Conatins score percentage for slot 12-15
* BITS 0-7 :- SLOT_12
* BITS 8-15 :- SLOT_13
* BITS 16-23 :- SLOT_14
* BITS 24-31 :- SLOT_15
*/
struct per_slot_score {
uint32_t num_slot;
uint32_t score_pcnt3_to_0;
uint32_t score_pcnt7_to_4;
uint32_t score_pcnt11_to_8;
uint32_t score_pcnt15_to_12;
};
/**
* struct scoring_cfg - Scoring related configuration
* @weight_cfg: weigtage config for config
* @rssi_score: Rssi related config for scoring config
* @esp_qbss_scoring: esp and qbss related scoring config
* @oce_wan_scoring: oce related scoring config
* @bandwidth_weight_per_index: BW wight per index
* @nss_weight_per_index: nss weight per index
* @band_weight_per_index: band weight per index
* @is_bssid_hint_priority: True if bssid_hint is given priority
*/
struct scoring_cfg {
struct weight_cfg weight_config;
struct rssi_config_score rssi_score;
struct per_slot_score esp_qbss_scoring;
struct per_slot_score oce_wan_scoring;
uint32_t bandwidth_weight_per_index;
uint32_t nss_weight_per_index;
uint32_t band_weight_per_index;
bool is_bssid_hint_priority;
};
/**
* struct pcl_freq_weight_list - pcl freq weight info
* @num_of_pcl_channels: number of pcl channel
* @pcl_freq_list: pcl freq list
* @pcl_weight_list: pcl freq weight list
*/
struct pcl_freq_weight_list {
uint32_t num_of_pcl_channels;
uint32_t pcl_freq_list[NUM_CHANNELS];
uint8_t pcl_weight_list[NUM_CHANNELS];
};
/**
* wlan_cm_calculate_bss_score() - calculate bss score for the scan list
* @psoc: pointer to psoc object
* @pcl_list: pcl list for scoring
* @scan_list: scan list, contains the input list and after the
* func it will have sorted list
* @bssid_hint: bssid hint
*
* Return: void
*/
void wlan_cm_calculate_bss_score(struct wlan_objmgr_psoc *psoc,
struct pcl_freq_weight_list *pcl_lst,
qdf_list_t *scan_list,
struct qdf_mac_addr *bssid_hint);
/**
* wlan_cm_init_score_config() - Init score INI and config
* @psoc: pointer to psoc object
* @score_cfg: score config
*
* Return: void
*/
void wlan_cm_init_score_config(struct wlan_objmgr_psoc *psoc,
struct scoring_cfg *score_cfg);
#endif

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2019 The Linux Foundation. All rights reserved.
* Copyright (c) 2019-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -23,6 +23,7 @@
#include <wlan_ext_mlme_obj_types.h>
#include <wlan_vdev_mgr_tgt_if_rx_defs.h>
#include <qdf_timer.h>
#include <wlan_cm_bss_score_param.h>
/* Max RNR size given max vaps are 16 */
#define MAX_RNR_SIZE 256
@@ -39,13 +40,39 @@ struct wlan_6ghz_rnr_global_cache {
uint16_t rnr_size;
};
/**
* struct psoc_phy_config - psoc phy caps
* @vdev_nss_24g: Number of NSS the device support in 2.4Ghz
* @vdev_nss_5g: Number of NSS the device support in 5Ghz
* @ht_cap: If dev is configured as HT capable
* @vht_cap:If dev is configured as VHT capable
* @he_cap: If dev is configured as HE capable
* @vht_24G_cap:If dev is configured as VHT capable for 2.4Ghz
* @beamformee_cap:If dev is configured as BF capable
* @bw_above_20_5ghz: BW greater than 20Mhz supprted for 5Ghz
* @bw_above_20_24ghz: BW greater than 20Mhz supprted for 2.4Ghz
*/
struct psoc_phy_config {
uint8_t vdev_nss_24g;
uint8_t vdev_nss_5g;
uint32_t ht_cap:1,
vht_cap:1,
he_cap:1,
vht_24G_cap:1,
beamformee_cap:1,
bw_above_20_5ghz:1,
bw_above_20_24ghz:1;
};
/**
* struct psoc_mlme_obj - PSoC MLME component object
* @psoc: PSoC object
* @ext_psoc_ptr: PSoC legacy pointer
* @psoc_vdev_rt: PSoC Vdev response timer
* @psoc_mlme_wakelock: Wakelock to prevent system going to suspend
* @ext_psoc_ptr: PSoC legacy pointer
* @psoc_vdev_rt: PSoC Vdev response timer
* @psoc_mlme_wakelock: Wakelock to prevent system going to suspend
* @rnr_6ghz_cache: Cache of 6Ghz vap in RNR ie format
* @score_config: BSS scoring related config
* @phy_config: Psoc Phy config
*/
struct psoc_mlme_obj {
struct wlan_objmgr_psoc *psoc;
@@ -55,6 +82,8 @@ struct psoc_mlme_obj {
struct psoc_mlme_wakelock psoc_mlme_wakelock;
#endif
struct wlan_6ghz_rnr_global_cache rnr_6ghz_cache;
struct scoring_cfg score_config;
struct psoc_phy_config phy_config;
};
#endif

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2019 The Linux Foundation. All rights reserved.
* Copyright (c) 2019-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -21,6 +21,8 @@
#ifndef _WLAN_PSOC_MLME_API_H_
#define _WLAN_PSOC_MLME_API_H_
#include <include/wlan_psoc_mlme.h>
/**
* wlan_psoc_mlme_get_cmpt_obj() - Returns PSOC MLME component object
* @psoc: PSOC object
@@ -56,4 +58,34 @@ mlme_psoc_ext_t *wlan_psoc_mlme_get_ext_hdl(struct wlan_objmgr_psoc *psoc);
void wlan_psoc_mlme_set_ext_hdl(struct psoc_mlme_obj *psoc_mlme,
mlme_psoc_ext_t *psoc_ext_hdl);
/**
* wlan_psoc_set_phy_config() - Init psoc phy related configs
* @psoc: pointer to psoc object
* @phy_config: phy related configs score config
*
* Return: void
*/
void wlan_psoc_set_phy_config(struct wlan_objmgr_psoc *psoc,
struct psoc_phy_config *phy_config);
/**
* mlme_psoc_open() - MLME component Open
* @psoc: pointer to psoc object
*
* Open the MLME component and initialize the MLME structure
*
* Return: QDF Status
*/
QDF_STATUS mlme_psoc_open(struct wlan_objmgr_psoc *psoc);
/**
* mlme_psoc_close() - MLME component close
* @psoc: pointer to psoc object
*
* Open the MLME component and initialize the MLME structure
*
* Return: QDF Status
*/
QDF_STATUS mlme_psoc_close(struct wlan_objmgr_psoc *psoc);
#endif

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2019 The Linux Foundation. All rights reserved.
* Copyright (c) 2019-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -59,4 +59,47 @@ void wlan_psoc_mlme_set_ext_hdl(struct psoc_mlme_obj *psoc_mlme,
psoc_mlme->ext_psoc_ptr = psoc_ext_hdl;
}
void wlan_psoc_set_phy_config(struct wlan_objmgr_psoc *psoc,
struct psoc_phy_config *phy_config)
{
struct psoc_mlme_obj *mlme_psoc_obj;
struct psoc_phy_config *config;
if (!phy_config) {
mlme_err("phy_config is NUll");
return;
}
mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
if (!mlme_psoc_obj)
return;
config = &mlme_psoc_obj->phy_config;
qdf_mem_copy(config, phy_config, sizeof(*config));
}
static void mlme_init_cfg(struct wlan_objmgr_psoc *psoc)
{
struct psoc_mlme_obj *mlme_psoc_obj;
mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
if (!mlme_psoc_obj)
return;
wlan_cm_init_score_config(psoc, &mlme_psoc_obj->score_config);
}
QDF_STATUS mlme_psoc_open(struct wlan_objmgr_psoc *psoc)
{
mlme_init_cfg(psoc);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS mlme_psoc_close(struct wlan_objmgr_psoc *psoc)
{
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(wlan_psoc_mlme_set_ext_hdl);

View File

@@ -1,920 +0,0 @@
/*
* Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* DOC: contains scan bss scoring logic
*/
#include <wlan_scan_utils_api.h>
#include "wlan_scan_main.h"
#include "wlan_scan_cache_db_i.h"
#ifdef WLAN_POLICY_MGR_ENABLE
#include "wlan_policy_mgr_api.h"
#endif
#include "wlan_reg_services_api.h"
#define SCM_20MHZ_BW_INDEX 0
#define SCM_40MHZ_BW_INDEX 1
#define SCM_80MHZ_BW_INDEX 2
#define SCM_160MHZ_BW_INDEX 3
#define SCM_MAX_BW_INDEX 4
#define SCM_NSS_1x1_INDEX 0
#define SCM_NSS_2x2_INDEX 1
#define SCM_NSS_3x3_INDEX 2
#define SCM_NSS_4x4_INDEX 3
#define SCM_MAX_NSS_INDEX 4
#define SCM_BAND_2G_INDEX 0
#define SCM_BAND_5G_INDEX 1
#define SCM_BAND_6G_INDEX 2
/* 2 and 3 are reserved */
#define SCM_MAX_BAND_INDEX 4
#define SCM_SCORE_INDEX_0 0
#define SCM_SCORE_INDEX_3 3
#define SCM_SCORE_INDEX_7 7
#define SCM_SCORE_OFFSET_INDEX_7_4 4
#define SCM_SCORE_INDEX_11 11
#define SCM_SCORE_OFFSET_INDEX_11_8 8
#define SCM_SCORE_MAX_INDEX 15
#define SCM_SCORE_OFFSET_INDEX_15_12 12
#define SCM_MAX_OCE_WAN_DL_CAP 16
#define SCM_MAX_CHANNEL_WEIGHT 100
#define SCM_MAX_CHANNEL_UTILIZATION 100
#define SCM_MAX_ESTIMATED_AIR_TIME_FRACTION 255
#define MAX_AP_LOAD 255
#define SCM_MAX_WEIGHT_OF_PCL_CHANNELS 255
#define SCM_PCL_GROUPS_WEIGHT_DIFFERENCE 20
/* Congestion threshold (channel load %) to consider band and OCE WAN score */
#define CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE 75
bool scm_is_better_bss(struct scan_default_params *params,
struct scan_cache_entry *bss1,
struct scan_cache_entry *bss2)
{
if (bss1->bss_score > bss2->bss_score)
return true;
else if (bss1->bss_score == bss2->bss_score)
if (bss1->rssi_raw > bss2->rssi_raw)
return true;
return false;
}
/**
* scm_get_rssi_pcnt_for_slot () - calculate rssi % score based on the slot
* index between the high rssi and low rssi threshold
* @high_rssi_threshold: High rssi of the window
* @low_rssi_threshold: low rssi of the window
* @high_rssi_pcnt: % score for the high rssi
* @low_rssi_pcnt: %score for the low rssi
* @bucket_size: bucket size of the window
* @bss_rssi: Input rssi for which value need to be calculated
*
* Return : rssi pct to use for the given rssi
*/
static inline
int8_t scm_get_rssi_pcnt_for_slot(int32_t high_rssi_threshold,
int32_t low_rssi_threshold, uint32_t high_rssi_pcnt,
uint32_t low_rssi_pcnt, uint32_t bucket_size, int8_t bss_rssi)
{
int8_t slot_index, slot_size, rssi_diff, num_slot, rssi_pcnt;
num_slot = ((high_rssi_threshold -
low_rssi_threshold) / bucket_size) + 1;
slot_size = ((high_rssi_pcnt - low_rssi_pcnt) +
(num_slot / 2)) / (num_slot);
rssi_diff = high_rssi_threshold - bss_rssi;
slot_index = (rssi_diff / bucket_size) + 1;
rssi_pcnt = high_rssi_pcnt - (slot_size * slot_index);
if (rssi_pcnt < low_rssi_pcnt)
rssi_pcnt = low_rssi_pcnt;
scm_debug("Window %d -> %d pcnt range %d -> %d bucket_size %d bss_rssi %d num_slot %d slot_size %d rssi_diff %d slot_index %d rssi_pcnt %d",
high_rssi_threshold, low_rssi_threshold, high_rssi_pcnt,
low_rssi_pcnt, bucket_size, bss_rssi, num_slot, slot_size,
rssi_diff, slot_index, rssi_pcnt);
return rssi_pcnt;
}
/**
* scm_calculate_rssi_score () - Calculate RSSI score based on AP RSSI
* @score_param: rssi score params
* @rssi: rssi of the AP
* @rssi_weightage: rssi_weightage out of total weightage
*
* Return : rssi score
*/
static int32_t scm_calculate_rssi_score(
struct rssi_cfg_score *score_param,
int32_t rssi, uint8_t rssi_weightage)
{
int8_t rssi_pcnt;
int32_t total_rssi_score;
int32_t best_rssi_threshold;
int32_t good_rssi_threshold;
int32_t bad_rssi_threshold;
uint32_t good_rssi_pcnt;
uint32_t bad_rssi_pcnt;
uint32_t good_bucket_size;
uint32_t bad_bucket_size;
best_rssi_threshold = score_param->best_rssi_threshold*(-1);
good_rssi_threshold = score_param->good_rssi_threshold*(-1);
bad_rssi_threshold = score_param->bad_rssi_threshold*(-1);
good_rssi_pcnt = score_param->good_rssi_pcnt;
bad_rssi_pcnt = score_param->bad_rssi_pcnt;
good_bucket_size = score_param->good_rssi_bucket_size;
bad_bucket_size = score_param->bad_rssi_bucket_size;
total_rssi_score = (MAX_PCT_SCORE * rssi_weightage);
/*
* If RSSI is better than the best rssi threshold then it return full
* score.
*/
if (rssi > best_rssi_threshold)
return total_rssi_score;
/*
* If RSSI is less or equal to bad rssi threshold then it return
* least score.
*/
if (rssi <= bad_rssi_threshold)
return (total_rssi_score * bad_rssi_pcnt) / 100;
/* RSSI lies between best to good rssi threshold */
if (rssi > good_rssi_threshold)
rssi_pcnt = scm_get_rssi_pcnt_for_slot(best_rssi_threshold,
good_rssi_threshold, 100, good_rssi_pcnt,
good_bucket_size, rssi);
else
rssi_pcnt = scm_get_rssi_pcnt_for_slot(good_rssi_threshold,
bad_rssi_threshold, good_rssi_pcnt,
bad_rssi_pcnt, bad_bucket_size,
rssi);
return (total_rssi_score * rssi_pcnt) / 100;
}
/**
* scm_calculate_pcl_score () - Calculate PCL score based on PCL weightage
* @pcl_chan_weight: pcl weight of BSS channel
* @pcl_weightage: PCL _weightage out of total weightage
*
* Return : pcl score
*/
static int32_t scm_calculate_pcl_score(int pcl_chan_weight,
uint8_t pcl_weightage)
{
int32_t pcl_score = 0;
int32_t temp_pcl_chan_weight = 0;
if (pcl_chan_weight) {
temp_pcl_chan_weight =
(SCM_MAX_WEIGHT_OF_PCL_CHANNELS - pcl_chan_weight);
temp_pcl_chan_weight = qdf_do_div(temp_pcl_chan_weight,
SCM_PCL_GROUPS_WEIGHT_DIFFERENCE);
pcl_score = pcl_weightage - temp_pcl_chan_weight;
if (pcl_score < 0)
pcl_score = 0;
}
return pcl_score * MAX_PCT_SCORE;
}
/**
* scm_rssi_is_same_bucket () - check if both rssi fall in same bucket
* @rssi_top_thresh: high rssi threshold of the the window
* @low_rssi_threshold: low rssi of the window
* @rssi_ref1: rssi ref one
* @rssi_ref2: rssi ref two
* @bucket_size: bucket size of the window
*
* Return : true if both fall in same window
*/
static inline bool scm_rssi_is_same_bucket(int8_t rssi_top_thresh,
int8_t rssi_ref1, int8_t rssi_ref2, int8_t bucket_size)
{
int8_t rssi_diff1 = 0;
int8_t rssi_diff2 = 0;
rssi_diff1 = rssi_top_thresh - rssi_ref1;
rssi_diff2 = rssi_top_thresh - rssi_ref2;
return (rssi_diff1 / bucket_size) == (rssi_diff2 / bucket_size);
}
/**
* scm_roam_calculate_prorated_pcnt_by_rssi () - Calculate prorated RSSI score
* based on AP RSSI. This will be used to determine HT VHT score
* @score_param: rssi score params
* @rssi: bss rssi
* @rssi_weightage: rssi_weightage out of total weightage
*
* If rssi is greater than good threshold return 100, if less than bad return 0,
* if between good and bad, return prorated rssi score for the index.
*
* Return : rssi prorated score
*/
static int8_t scm_roam_calculate_prorated_pcnt_by_rssi(
struct rssi_cfg_score *score_param,
int32_t rssi, uint8_t rssi_weightage)
{
int32_t good_rssi_threshold;
int32_t bad_rssi_threshold;
int8_t rssi_pref_5g_rssi_thresh;
bool same_bucket;
good_rssi_threshold = score_param->good_rssi_threshold * (-1);
bad_rssi_threshold = score_param->bad_rssi_threshold * (-1);
rssi_pref_5g_rssi_thresh = score_param->rssi_pref_5g_rssi_thresh * (-1);
/* If RSSI is greater than good rssi return full weight */
if (rssi > good_rssi_threshold)
return MAX_PCT_SCORE;
same_bucket = scm_rssi_is_same_bucket(good_rssi_threshold,
rssi, rssi_pref_5g_rssi_thresh,
score_param->bad_rssi_bucket_size);
if (same_bucket || (rssi < rssi_pref_5g_rssi_thresh))
return 0;
/* If RSSI is less or equal to bad rssi threshold then it return 0 */
if (rssi <= bad_rssi_threshold)
return 0;
/* If RSSI is between good and bad threshold */
return scm_get_rssi_pcnt_for_slot(good_rssi_threshold,
bad_rssi_threshold,
score_param->good_rssi_pcnt,
score_param->bad_rssi_pcnt,
score_param->bad_rssi_bucket_size,
rssi);
}
/**
* scm_calculate_bandwidth_score () - Calculate BW score
* @entry: scan entry
* @score_config: scoring config
* @prorated_pct: prorated % to return dependent on RSSI
*
* Return : bw score
*/
static int32_t scm_calculate_bandwidth_score(
struct scan_cache_entry *entry,
struct scoring_config *score_config, uint8_t prorated_pct)
{
uint32_t score;
int32_t bw_weight_per_idx;
uint8_t cbmode = 0;
uint8_t ch_width_index;
bool is_vht = false;
bw_weight_per_idx = score_config->bandwidth_weight_per_index;
if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
cbmode = score_config->cb_mode_24G;
if (score_config->vht_24G_cap)
is_vht = true;
} else if (score_config->vht_cap) {
is_vht = true;
cbmode = score_config->cb_mode_5G;
}
if (IS_WLAN_PHYMODE_160MHZ(entry->phy_mode))
ch_width_index = SCM_160MHZ_BW_INDEX;
else if (IS_WLAN_PHYMODE_80MHZ(entry->phy_mode))
ch_width_index = SCM_80MHZ_BW_INDEX;
else if (IS_WLAN_PHYMODE_40MHZ(entry->phy_mode))
ch_width_index = SCM_40MHZ_BW_INDEX;
else
ch_width_index = SCM_20MHZ_BW_INDEX;
if (!score_config->ht_cap && ch_width_index > SCM_20MHZ_BW_INDEX)
ch_width_index = SCM_20MHZ_BW_INDEX;
if (!is_vht && ch_width_index > SCM_40MHZ_BW_INDEX)
ch_width_index = SCM_40MHZ_BW_INDEX;
if (cbmode && ch_width_index > SCM_20MHZ_BW_INDEX)
score = WLAN_GET_SCORE_PERCENTAGE(bw_weight_per_idx,
ch_width_index);
else
score = WLAN_GET_SCORE_PERCENTAGE(bw_weight_per_idx,
SCM_20MHZ_BW_INDEX);
return (prorated_pct * score *
score_config->weight_cfg.chan_width_weightage) / MAX_PCT_SCORE;
}
/**
* scm_get_score_for_index () - get score for the given index
* @index: index for which we need the score
* @weightage: weigtage for the param
* @score: per slot score
*
* Return : score for the index
*/
static int32_t scm_get_score_for_index(uint8_t index,
uint8_t weightage, struct per_slot_scoring *score)
{
if (index <= SCM_SCORE_INDEX_3)
return weightage * WLAN_GET_SCORE_PERCENTAGE(
score->score_pcnt3_to_0,
index);
else if (index <= SCM_SCORE_INDEX_7)
return weightage * WLAN_GET_SCORE_PERCENTAGE(
score->score_pcnt7_to_4,
index - SCM_SCORE_OFFSET_INDEX_7_4);
else if (index <= SCM_SCORE_INDEX_11)
return weightage * WLAN_GET_SCORE_PERCENTAGE(
score->score_pcnt11_to_8,
index - SCM_SCORE_OFFSET_INDEX_11_8);
else
return weightage * WLAN_GET_SCORE_PERCENTAGE(
score->score_pcnt15_to_12,
index - SCM_SCORE_OFFSET_INDEX_15_12);
}
/**
* scm_get_congestion_pct () - Calculate congestion pct from esp/qbss load
* @entry: bss information
*
* Return : congestion pct
*/
static int32_t scm_get_congestion_pct(struct scan_cache_entry *entry)
{
uint32_t ap_load = 0;
uint32_t est_air_time_percentage = 0;
uint32_t congestion = 0;
if (entry->air_time_fraction) {
/* Convert 0-255 range to percentage */
est_air_time_percentage = entry->air_time_fraction *
SCM_MAX_CHANNEL_WEIGHT;
est_air_time_percentage = qdf_do_div(est_air_time_percentage,
SCM_MAX_ESTIMATED_AIR_TIME_FRACTION);
/*
* Calculate channel congestion from estimated air time
* fraction.
*/
congestion = SCM_MAX_CHANNEL_UTILIZATION -
est_air_time_percentage;
} else if (entry->qbss_chan_load) {
ap_load = (entry->qbss_chan_load * MAX_PCT_SCORE);
/*
* Calculate ap_load in % from qbss channel load from
* 0-255 range
*/
congestion = qdf_do_div(ap_load, MAX_AP_LOAD);
}
return congestion;
}
/**
* scm_calculate_congestion_score () - Calculate congestion score
* @entry: bss information
* @score_params: bss score params
* @congestion_pct: congestion pct
*
* Return : congestion score
*/
static int32_t scm_calculate_congestion_score(
struct scan_cache_entry *entry,
struct scoring_config *score_params,
uint32_t *congestion_pct)
{
uint32_t window_size;
uint8_t index;
int32_t good_rssi_threshold;
*congestion_pct = scm_get_congestion_pct(entry);
if (!score_params->esp_qbss_scoring.num_slot)
return 0;
if (score_params->esp_qbss_scoring.num_slot >
SCM_SCORE_MAX_INDEX)
score_params->esp_qbss_scoring.num_slot =
SCM_SCORE_MAX_INDEX;
good_rssi_threshold =
score_params->rssi_score.good_rssi_threshold * (-1);
/* For bad zone rssi get score from last index */
if (entry->rssi_raw <= good_rssi_threshold)
return scm_get_score_for_index(
score_params->esp_qbss_scoring.num_slot,
score_params->weight_cfg.
channel_congestion_weightage,
&score_params->esp_qbss_scoring);
if (!*congestion_pct)
return score_params->weight_cfg.channel_congestion_weightage *
WLAN_GET_SCORE_PERCENTAGE(
score_params->esp_qbss_scoring.score_pcnt3_to_0,
SCM_SCORE_INDEX_0);
window_size = MAX_PCT_SCORE / score_params->esp_qbss_scoring.num_slot;
/* Desired values are from 1 to 15, as 0 is for not present. so do +1 */
index = qdf_do_div(*congestion_pct, window_size) + 1;
if (index > score_params->esp_qbss_scoring.num_slot)
index = score_params->esp_qbss_scoring.num_slot;
return scm_get_score_for_index(index, score_params->weight_cfg.
channel_congestion_weightage,
&score_params->esp_qbss_scoring);
}
/**
* scm_calculate_nss_score () - Calculate congestion score
* @psoc: psoc ptr
* @score_config: scoring config
* @ap_nss: ap nss
* @prorated_pct: prorated % to return dependent on RSSI
*
* Return : nss score
*/
static int32_t scm_calculate_nss_score(struct wlan_objmgr_psoc *psoc,
struct scoring_config *score_config, uint8_t ap_nss,
uint8_t prorated_pct, uint32_t sta_nss)
{
uint8_t nss;
uint8_t score_pct;
nss = ap_nss;
if (sta_nss < nss)
nss = sta_nss;
if (nss == 4)
score_pct = WLAN_GET_SCORE_PERCENTAGE(
score_config->nss_weight_per_index,
SCM_NSS_4x4_INDEX);
else if (nss == 3)
score_pct = WLAN_GET_SCORE_PERCENTAGE(
score_config->nss_weight_per_index,
SCM_NSS_3x3_INDEX);
else if (nss == 2)
score_pct = WLAN_GET_SCORE_PERCENTAGE(
score_config->nss_weight_per_index,
SCM_NSS_2x2_INDEX);
else
score_pct = WLAN_GET_SCORE_PERCENTAGE(
score_config->nss_weight_per_index,
SCM_NSS_1x1_INDEX);
return (score_config->weight_cfg.nss_weightage * score_pct *
prorated_pct) / MAX_PCT_SCORE;
}
/**
* scm_calculate_oce_wan_score () - Calculate oce wan score
* @entry: bss information
* @score_params: bss score params
*
* Return : oce wan score
*/
static int32_t scm_calculate_oce_wan_score(
struct scan_cache_entry *entry,
struct scoring_config *score_params)
{
uint32_t window_size;
uint8_t index;
struct oce_reduced_wan_metrics wan_metrics;
uint8_t *mbo_oce_ie;
if (!score_params->oce_wan_scoring.num_slot)
return 0;
if (score_params->oce_wan_scoring.num_slot >
SCM_SCORE_MAX_INDEX)
score_params->oce_wan_scoring.num_slot =
SCM_SCORE_MAX_INDEX;
window_size = SCM_SCORE_MAX_INDEX/
score_params->oce_wan_scoring.num_slot;
mbo_oce_ie = util_scan_entry_mbo_oce(entry);
if (wlan_parse_oce_reduced_wan_metrics_ie(mbo_oce_ie,
&wan_metrics)) {
scm_err("downlink_av_cap %d", wan_metrics.downlink_av_cap);
/* if capacity is 0 return 0 score */
if (!wan_metrics.downlink_av_cap)
return 0;
/* Desired values are from 1 to WLAN_SCORE_MAX_INDEX */
index = qdf_do_div(wan_metrics.downlink_av_cap,
window_size);
} else {
index = SCM_SCORE_INDEX_0;
}
if (index > score_params->oce_wan_scoring.num_slot)
index = score_params->oce_wan_scoring.num_slot;
return scm_get_score_for_index(index,
score_params->weight_cfg.oce_wan_weightage,
&score_params->oce_wan_scoring);
}
/**
* scm_calculate_oce_subnet_id_weightage () - Calculate oce subnet id weightage
* @entry: bss entry
* @score_params: bss score params
*
* Return : oce subnet id score
*/
static uint32_t
scm_calculate_oce_subnet_id_weightage(struct scan_cache_entry *entry,
struct scoring_config *score_params,
bool *oce_subnet_id_present)
{
uint32_t score = 0;
uint8_t *mbo_oce_ie;
mbo_oce_ie = util_scan_entry_mbo_oce(entry);
*oce_subnet_id_present = wlan_parse_oce_subnet_id_ie(mbo_oce_ie);
if (*oce_subnet_id_present)
/* Consider 50% weightage of subnet id */
score = (score_params->weight_cfg.oce_subnet_id_weightage *
(MAX_PCT_SCORE / 2));
return score;
}
/**
* scm_calculate_oce_ap_tx_pwr_weightage () - Calculate oce ap tx pwr weightage
* @entry: bss entry
* @score_params: bss score params
* @ap_tx_pwr_dbm: pointer to hold ap tx power
*
* Return : oce ap tx power score
*/
static uint32_t
scm_calculate_oce_ap_tx_pwr_weightage(struct scan_cache_entry *entry,
struct scoring_config *score_params,
int8_t *ap_tx_pwr_dbm)
{
uint8_t *mbo_oce_ie, ap_tx_pwr_factor;
struct rssi_cfg_score *rssi_score_param;
int32_t best_rssi_threshold, good_rssi_threshold, bad_rssi_threshold;
uint32_t good_rssi_pcnt, bad_rssi_pcnt, good_bucket_size;
uint32_t score, normalized_ap_tx_pwr, bad_bucket_size;
bool ap_tx_pwr_cap_present = true;
mbo_oce_ie = util_scan_entry_mbo_oce(entry);
if (!wlan_parse_oce_ap_tx_pwr_ie(mbo_oce_ie, ap_tx_pwr_dbm)) {
ap_tx_pwr_cap_present = false;
/* If no OCE AP TX pwr, consider Uplink RSSI = Downlink RSSI */
normalized_ap_tx_pwr = entry->rssi_raw;
} else {
/*
* Normalized ap_tx_pwr =
* Uplink RSSI = (STA TX Power - * (AP TX power - RSSI)) in dBm.
* Currently assuming STA Tx Power to be 20dBm, though later it
* need to fetched from hal-phy API.
*/
normalized_ap_tx_pwr = (20 - (*ap_tx_pwr_dbm - entry->rssi_raw));
}
rssi_score_param = &score_params->rssi_score;
best_rssi_threshold = rssi_score_param->best_rssi_threshold * (-1);
good_rssi_threshold = rssi_score_param->good_rssi_threshold * (-1);
bad_rssi_threshold = rssi_score_param->bad_rssi_threshold * (-1);
good_rssi_pcnt = rssi_score_param->good_rssi_pcnt;
bad_rssi_pcnt = rssi_score_param->bad_rssi_pcnt;
good_bucket_size = rssi_score_param->good_rssi_bucket_size;
bad_bucket_size = rssi_score_param->bad_rssi_bucket_size;
/* Uplink RSSI is better than best rssi threshold */
if (normalized_ap_tx_pwr > best_rssi_threshold) {
ap_tx_pwr_factor = MAX_PCT_SCORE;
} else if (normalized_ap_tx_pwr <= bad_rssi_threshold) {
/* Uplink RSSI is less or equal to bad rssi threshold */
ap_tx_pwr_factor = rssi_score_param->bad_rssi_pcnt;
} else if (normalized_ap_tx_pwr > good_rssi_threshold) {
/* Uplink RSSI lies between best to good rssi threshold */
ap_tx_pwr_factor =
scm_get_rssi_pcnt_for_slot(best_rssi_threshold,
good_rssi_threshold, 100, good_rssi_pcnt,
good_bucket_size, normalized_ap_tx_pwr);
} else {
/* Uplink RSSI lies between good to best rssi threshold */
ap_tx_pwr_factor =
scm_get_rssi_pcnt_for_slot(good_rssi_threshold,
bad_rssi_threshold, good_rssi_pcnt,
bad_rssi_pcnt, bad_bucket_size,
normalized_ap_tx_pwr);
}
score = score_params->weight_cfg.oce_ap_tx_pwr_weightage *
ap_tx_pwr_factor;
return score;
}
#ifdef WLAN_POLICY_MGR_ENABLE
static uint32_t scm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
qdf_freq_t bss_channel_freq,
uint8_t vdev_nss_2g,
uint8_t vdev_nss_5g)
{
/*
* If station support nss as 2*2 but AP support NSS as 1*1,
* this AP will be given half weight compare to AP which are having
* NSS as 2*2.
*/
if (policy_mgr_is_chnl_in_diff_band(
psoc, bss_channel_freq) &&
policy_mgr_is_hw_dbs_capable(psoc) &&
!(policy_mgr_is_hw_dbs_2x2_capable(psoc)))
return 1;
return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
vdev_nss_2g :
vdev_nss_5g);
}
#else
static uint32_t scm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
qdf_freq_t bss_channel_freq,
uint8_t vdev_nss_2g,
uint8_t vdev_nss_5g)
{
return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
vdev_nss_2g :
vdev_nss_5g);
}
#endif
/**
* scm_get_band_score() - Get band prefernce weightage
* freq: Operating frequency of the AP
* @score_config: Score configuration
*
* Return : Band score for AP.
*/
static int
scm_get_band_score(uint32_t freq, struct scoring_config *score_config)
{
uint8_t band_index;
struct weight_config *weight_config;
weight_config = &score_config->weight_cfg;
if (WLAN_REG_IS_5GHZ_CH_FREQ(freq))
band_index = SCM_BAND_5G_INDEX;
else if (WLAN_REG_IS_24GHZ_CH_FREQ(freq))
band_index = SCM_BAND_2G_INDEX;
else if (WLAN_REG_IS_6GHZ_CHAN_FREQ(freq))
band_index = SCM_BAND_6G_INDEX;
else
return 0;
return weight_config->chan_band_weightage *
WLAN_GET_SCORE_PERCENTAGE(score_config->band_weight_per_index,
band_index);
}
int scm_calculate_bss_score(struct wlan_objmgr_psoc *psoc,
struct scan_default_params *params,
struct scan_cache_entry *entry,
int pcl_chan_weight)
{
int32_t score = 0;
int32_t rssi_score = 0;
int32_t pcl_score = 0;
int32_t ht_score = 0;
int32_t vht_score = 0;
int32_t he_score = 0;
int32_t bandwidth_score = 0;
int32_t beamformee_score = 0;
int32_t band_score = 0;
int32_t nss_score = 0;
int32_t congestion_score = 0;
int32_t congestion_pct = 0;
int32_t oce_wan_score = 0;
uint8_t oce_ap_tx_pwr_score = 0;
uint8_t oce_subnet_id_score = 0;
bool oce_subnet_id_present = 0;
uint8_t prorated_pcnt;
bool is_vht = false;
int8_t good_rssi_threshold;
int8_t rssi_pref_5g_rssi_thresh;
bool same_bucket = false;
bool ap_su_beam_former = false;
struct wlan_ie_vhtcaps *vht_cap;
struct scoring_config *score_config;
struct weight_config *weight_config;
struct wlan_scan_obj *scan_obj;
uint32_t sta_nss;
struct wlan_objmgr_pdev *pdev = NULL;
int8_t ap_tx_pwr_dbm = 0;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("scan_obj is NULL");
return 0;
}
score_config = &scan_obj->scan_def.score_config;
weight_config = &score_config->weight_cfg;
rssi_score = scm_calculate_rssi_score(&score_config->rssi_score,
entry->rssi_raw, weight_config->rssi_weightage);
score += rssi_score;
pcl_score = scm_calculate_pcl_score(pcl_chan_weight,
weight_config->pcl_weightage);
score += pcl_score;
prorated_pcnt = scm_roam_calculate_prorated_pcnt_by_rssi(
&score_config->rssi_score, entry->rssi_raw,
weight_config->rssi_weightage);
/*
* Add HT weight if HT is supported by the AP. In case
* of 6 GHZ AP, HT and VHT won't be supported so that
* these weightage to the same by default to match
* with 2.4/5 GHZ APs where HT, VHT is supported
*/
if (score_config->ht_cap && (entry->ie_list.htcap ||
WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
ht_score = prorated_pcnt *
weight_config->ht_caps_weightage;
score += ht_score;
if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
if (score_config->vht_24G_cap)
is_vht = true;
} else if (score_config->vht_cap) {
is_vht = true;
}
/* Add VHT score to 6 GHZ AP to match with 2.4/5 GHZ APs */
if (is_vht && (entry->ie_list.vhtcap ||
WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
vht_score = prorated_pcnt *
weight_config->vht_caps_weightage;
score += vht_score;
if (score_config->he_cap && entry->ie_list.hecap)
he_score = prorated_pcnt *
weight_config->he_caps_weightage;
score += he_score;
bandwidth_score = scm_calculate_bandwidth_score(entry, score_config,
prorated_pcnt);
score += bandwidth_score;
good_rssi_threshold =
score_config->rssi_score.good_rssi_threshold * (-1);
rssi_pref_5g_rssi_thresh =
score_config->rssi_score.rssi_pref_5g_rssi_thresh * (-1);
if (entry->rssi_raw < good_rssi_threshold)
same_bucket = scm_rssi_is_same_bucket(good_rssi_threshold,
entry->rssi_raw, rssi_pref_5g_rssi_thresh,
score_config->rssi_score.bad_rssi_bucket_size);
vht_cap = (struct wlan_ie_vhtcaps *) util_scan_entry_vhtcap(entry);
if (vht_cap && vht_cap->su_beam_former)
ap_su_beam_former = true;
if (is_vht && ap_su_beam_former &&
(entry->rssi_raw > rssi_pref_5g_rssi_thresh) && !same_bucket)
beamformee_score = MAX_PCT_SCORE *
weight_config->beamforming_cap_weightage;
score += beamformee_score;
congestion_score = scm_calculate_congestion_score(entry, score_config,
&congestion_pct);
score += congestion_score;
/*
* Consider OCE WAN score and band preference score only if
* congestion_pct is greater than CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE
*/
if (congestion_pct < CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE) {
/*
* If AP is on 5/6 GHZ channel , extra weigtage is added to BSS
* score. if RSSI is greater tha 5g rssi threshold or fall in
* same bucket else give weigtage to 2.4 GHZ AP.
*/
if ((entry->rssi_raw > rssi_pref_5g_rssi_thresh) &&
!same_bucket) {
if (!WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq))
band_score = scm_get_band_score(
entry->channel.chan_freq,
score_config);
} else if (WLAN_REG_IS_24GHZ_CH_FREQ(
entry->channel.chan_freq)) {
band_score =
scm_get_band_score(entry->channel.chan_freq,
score_config);
}
score += band_score;
oce_wan_score = scm_calculate_oce_wan_score(entry,
score_config);
score += oce_wan_score;
}
oce_ap_tx_pwr_score =
scm_calculate_oce_ap_tx_pwr_weightage(entry, score_config,
&ap_tx_pwr_dbm);
score += oce_ap_tx_pwr_score;
oce_subnet_id_score = scm_calculate_oce_subnet_id_weightage(entry,
score_config, &oce_subnet_id_present);
score += oce_subnet_id_score;
pdev = wlan_objmgr_get_pdev_by_id(psoc, entry->pdev_id, WLAN_SCAN_ID);
if (!pdev) {
scm_err("pdev is NULL");
return 0;
}
sta_nss = scm_get_sta_nss(psoc,
entry->channel.chan_freq,
score_config->vdev_nss_24g,
score_config->vdev_nss_5g);
wlan_objmgr_pdev_release_ref(pdev, WLAN_SCAN_ID);
/*
* If station support nss as 2*2 but AP support NSS as 1*1,
* this AP will be given half weight compare to AP which are having
* NSS as 2*2.
*/
nss_score = scm_calculate_nss_score(psoc, score_config, entry->nss,
prorated_pcnt, sta_nss);
score += nss_score;
scm_nofl_debug("Self: HT %d VHT %d HE %d VHT_24Ghz %d BF cap %d cb_mode_24g %d cb_mode_5G %d NSS %d",
score_config->ht_cap, score_config->vht_cap,
score_config->he_cap, score_config->vht_24G_cap,
score_config->beamformee_cap, score_config->cb_mode_24G,
score_config->cb_mode_5G, sta_nss);
scm_nofl_debug("Candidate(%pM freq %d): rssi %d HT %d VHT %d HE %d su bfer %d phy %d air time frac %d qbss %d cong_pct %d NSS %d ap_tx_pwr_dbm %d oce_subnet_id_present %d",
entry->bssid.bytes, entry->channel.chan_freq,
entry->rssi_raw, util_scan_entry_htcap(entry) ? 1 : 0,
util_scan_entry_vhtcap(entry) ? 1 : 0,
util_scan_entry_hecap(entry) ? 1 : 0, ap_su_beam_former,
entry->phy_mode, entry->air_time_fraction,
entry->qbss_chan_load, congestion_pct, entry->nss,
ap_tx_pwr_dbm, oce_subnet_id_present);
scm_nofl_debug("Scores: prorated_pcnt %d rssi %d pcl %d ht %d vht %d he %d bfee %d bw %d band %d congestion %d nss %d oce wan %d oce ap tx pwr %d subnet id score %d TOTAL %d",
prorated_pcnt, rssi_score, pcl_score, ht_score,
vht_score, he_score, beamformee_score, bandwidth_score,
band_score, congestion_score, nss_score, oce_wan_score,
oce_ap_tx_pwr_score, oce_subnet_id_score, score);
entry->bss_score = score;
return score;
}
bool scm_get_pcl_weight_of_channel(uint32_t chan_freq,
struct scan_filter *filter,
int *pcl_chan_weight,
uint8_t *weight_list)
{
int i;
bool found = false;
if (!filter)
return found;
for (i = 0; i < filter->num_of_pcl_channels; i++) {
if (filter->pcl_freq_list[i] == chan_freq) {
*pcl_chan_weight = filter->pcl_weight_list[i];
found = true;
break;
}
}
return found;
}

View File

@@ -1001,82 +1001,6 @@ QDF_STATUS scm_handle_bcn_probe(struct scheduler_msg *msg)
return __scm_handle_bcn_probe(msg->bodyptr);
}
/**
* scm_list_insert_sorted() - add the entries in scan_list in sorted way
* @psoc: psoc ptr
* @filter: scan filter
* @scan_node: node entry to be inserted
* @scan_list: Temp scan list
*
* Add the entries in scan_list in sorted way considering
* cap_val and prefer val. The node is copy of original scan entry and
* thus no lock is required.
*
* Return: void
*/
static void scm_list_insert_sorted(struct wlan_objmgr_psoc *psoc,
struct scan_filter *filter,
struct scan_cache_node *scan_node,
qdf_list_t *scan_list)
{
struct scan_cache_node *cur_node;
qdf_list_node_t *cur_lst = NULL, *next_lst = NULL;
struct scan_default_params *params;
int pcl_chan_weight = 0;
params = wlan_scan_psoc_get_def_params(psoc);
if (!params) {
scm_err("wlan_scan_psoc_get_def_params failed");
return;
}
if (filter->num_of_pcl_channels > 0 &&
(scan_node->entry->rssi_raw > SCM_PCL_RSSI_THRESHOLD)) {
if (scm_get_pcl_weight_of_channel(
scan_node->entry->channel.chan_freq,
filter, &pcl_chan_weight,
filter->pcl_weight_list)) {
scm_debug("pcl freq %d pcl_chan_weight %d",
scan_node->entry->channel.chan_freq,
pcl_chan_weight);
}
}
if (params->is_bssid_hint_priority &&
!qdf_mem_cmp(filter->bssid_hint.bytes,
scan_node->entry->bssid.bytes,
QDF_MAC_ADDR_SIZE))
scan_node->entry->bss_score = BEST_CANDIDATE_MAX_BSS_SCORE;
else
scm_calculate_bss_score(psoc, params,
scan_node->entry, pcl_chan_weight);
if (qdf_list_empty(scan_list)) {
qdf_list_insert_front(scan_list, &scan_node->node);
return;
}
qdf_list_peek_front(scan_list, &cur_lst);
while (cur_lst) {
cur_node = qdf_container_of(cur_lst,
struct scan_cache_node, node);
if (scm_is_better_bss(params,
scan_node->entry, cur_node->entry)) {
qdf_list_insert_before(scan_list,
&scan_node->node,
&cur_node->node);
break;
}
qdf_list_peek_next(scan_list,
cur_lst, &next_lst);
cur_lst = next_lst;
next_lst = NULL;
}
if (!cur_lst)
qdf_list_insert_back(scan_list,
&scan_node->node);
}
/**
* scm_scan_apply_filter_get_entry() - apply filter and get the
* scan entry
@@ -1121,11 +1045,7 @@ scm_scan_apply_filter_get_entry(struct wlan_objmgr_psoc *psoc,
qdf_mem_copy(&scan_node->entry->neg_sec_info,
&security, sizeof(scan_node->entry->neg_sec_info));
if (!filter || !filter->bss_scoring_required)
qdf_list_insert_front(scan_list,
&scan_node->node);
else
scm_list_insert_sorted(psoc, filter, scan_node, scan_list);
qdf_list_insert_front(scan_list, &scan_node->node);
return QDF_STATUS_SUCCESS;
}

View File

@@ -33,9 +33,6 @@
#define SCAN_GET_HASH(addr) \
(((const uint8_t *)(addr))[QDF_MAC_ADDR_SIZE - 1] % SCAN_HASH_SIZE)
#define SCM_PCL_RSSI_THRESHOLD -75
#define BEST_CANDIDATE_MAX_BSS_SCORE 10000
#define ADJACENT_CHANNEL_RSSI_THRESHOLD -80
/**

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2019 The Linux Foundation. All rights reserved.
* Copyright (c) 2017, 2019-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
@@ -37,39 +37,6 @@ bool scm_filter_match(struct wlan_objmgr_psoc *psoc,
struct scan_filter *filter,
struct security_info *security);
/**
* scm_is_better_bss() - Is bss1 better than bss2
* @params: scan params
* @bss1: Pointer to the first BSS.
* @bss2: Pointer to the second BSS.
*
* This routine helps in determining the preference value
* of a particular BSS in the scan result which is further
* used in the sorting logic of the final candidate AP's.
*
* Return: true, if bss1 is better than bss2
* false, if bss2 is better than bss1.
*/
bool scm_is_better_bss(struct scan_default_params *params,
struct scan_cache_entry *bss1,
struct scan_cache_entry *bss2);
/**
* scm_calculate_bss_score() - calculate BSS score used to get
* the preference
* @psoc: psoc ptr;
* @params: scan params
* @entry: scan entry for which score needs to be calculated
* @pcl_chan_weight: weight for pcl channel
*
* Return: scan db for the pdev id
*/
int scm_calculate_bss_score(
struct wlan_objmgr_psoc *psoc,
struct scan_default_params *params,
struct scan_cache_entry *entry,
int pcl_chan_weight);
/**
* wlan_pdevid_get_scan_db() - private API to get scan db from pdev id
* @psoc: psoc object
@@ -115,19 +82,4 @@ wlan_pdev_get_scan_db(struct wlan_objmgr_psoc *psoc,
return wlan_pdevid_get_scan_db(psoc, pdev_id);
}
/**
* scm_get_pcl_weight_of_channel() - Get PCL weight if channel is present in pcl
* @chan_freq: channel frequency of bss, unit: MHz
* @filter: filter
* @pcl_chan_weight: Get PCL weight for corresponding channel
* @weight_list: Weight list for all the pcl channels.
*
* Get pcl_chan_weight if provided channel is present in pcl list
*
* Return: true or false
*/
bool scm_get_pcl_weight_of_channel(uint32_t chan_freq,
struct scan_filter *filter,
int *pcl_chan_weight,
uint8_t *weight_list);
#endif

View File

@@ -313,7 +313,6 @@ struct extscan_def_config {
* @select_5gh_margin: Prefer connecting to 5G AP even if
* its RSSI is lower by select_5gh_margin dbm than 2.4G AP.
* applicable if prefer_5ghz is set.
* @is_bssid_hint_priority: True if bssid_hint is given priority
* @enable_mac_spoofing: enable mac address spoof in scan
* @max_bss_per_pdev: maximum number of bss entries to be maintained per pdev
* @max_active_scans_allowed: maximum number of active parallel scan allowed
@@ -397,7 +396,6 @@ struct scan_default_params {
qdf_time_t scan_cache_aging_time;
uint32_t select_5ghz_margin;
bool enable_mac_spoofing;
bool is_bssid_hint_priority;
uint32_t usr_cfg_probe_rpt_time;
uint32_t usr_cfg_num_probes;
uint16_t max_bss_per_pdev;
@@ -461,7 +459,6 @@ struct scan_default_params {
};
uint32_t scan_events;
};
struct scoring_config score_config;
};
/**

View File

@@ -210,4 +210,17 @@ wlan_scan_process_bcn_probe_rx_sync(struct wlan_objmgr_psoc *psoc,
*/
qdf_time_t wlan_scan_get_aging_time(struct wlan_objmgr_psoc *psoc);
/**
* wlan_scan_purge_results() - purge the scan list
* @scan_list: scan list to be purged
*
* This function purge the temp scan list
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS wlan_scan_purge_results(qdf_list_t *scan_list)
{
return scm_purge_scan_results(scan_list);
}
#endif

View File

@@ -336,31 +336,6 @@ enum scan_mode_6ghz {
true, \
"honour NL80211 scan policy flags")
/*
* <ini>
* is_bssid_hint_priority - Set priority for connection with bssid_hint
* BSSID.
* @Min: 0
* @Max: 1
* @Default: 1
*
* This ini is used to give priority to BSS for connection which comes
* as part of bssid_hint
*
* Related: None
*
* Supported Feature: STA
*
* Usage: External
*
* </ini>
*/
#define CFG_IS_BSSID_HINT_PRIORITY CFG_INI_UINT(\
"is_bssid_hint_priority",\
0, 1, 0,\
CFG_VALUE_OR_DEFAULT, \
"Set priority for connection with bssid_hint")
#ifdef FEATURE_WLAN_SCAN_PNO
/*
* <ini>
@@ -1245,7 +1220,6 @@ enum scan_mode_6ghz {
CFG(CFG_ADAPTIVE_SCAN_DWELL_MODE) \
CFG(CFG_ADAPTIVE_SCAN_DWELL_MODE_NC) \
CFG(CFG_HONOUR_NL_SCAN_POLICY_FLAGS) \
CFG(CFG_IS_BSSID_HINT_PRIORITY) \
CFG(CFG_PASSIVE_MAX_CHANNEL_TIME_CONC) \
CFG(CFG_ACTIVE_MAX_CHANNEL_TIME_CONC) \
CFG(CFG_MAX_REST_TIME_CONC) \

View File

@@ -58,36 +58,6 @@ typedef uint32_t wlan_scan_id;
#define PROBE_REQ_BITMAP_LEN 8
#define MAX_PROBE_REQ_OUIS 16
#define RSSI_WEIGHTAGE 20
#define HT_CAPABILITY_WEIGHTAGE 2
#define VHT_CAP_WEIGHTAGE 1
#define HE_CAP_WEIGHTAGE 2
#define CHAN_WIDTH_WEIGHTAGE 12
#define CHAN_BAND_WEIGHTAGE 2
#define NSS_WEIGHTAGE 16
#define BEAMFORMING_CAP_WEIGHTAGE 2
#define PCL_WEIGHT 10
#define CHANNEL_CONGESTION_WEIGHTAGE 5
#define OCE_WAN_WEIGHTAGE 2
#define OCE_AP_TX_POWER_WEIGHTAGE 5
#define OCE_SUBNET_ID_WEIGHTAGE 3
#define BEST_CANDIDATE_MAX_WEIGHT 200
#define MAX_PCT_SCORE 100
#define MAX_INDEX_PER_INI 4
#define WLAN_GET_BITS(_val, _index, _num_bits) \
(((_val) >> (_index)) & ((1 << (_num_bits)) - 1))
#define WLAN_SET_BITS(_var, _index, _num_bits, _val) do { \
(_var) &= ~(((1 << (_num_bits)) - 1) << (_index)); \
(_var) |= (((_val) & ((1 << (_num_bits)) - 1)) << (_index)); \
} while (0)
#define WLAN_GET_SCORE_PERCENTAGE(value32, bw_index) \
WLAN_GET_BITS(value32, (8 * (bw_index)), 8)
#define WLAN_SET_SCORE_PERCENTAGE(value32, score_pcnt, bw_index) \
WLAN_SET_BITS(value32, (8 * (bw_index)), 8, score_pcnt)
/* forward declaration */
struct wlan_objmgr_vdev;
struct wlan_objmgr_pdev;
@@ -468,133 +438,6 @@ struct scan_cache_entry {
#define MAX_FAVORED_BSSID 16
#define MAX_ALLOWED_SSID_LIST 4
/**
* struct weight_config - weight params to calculate best candidate
* @rssi_weightage: RSSI weightage
* @ht_caps_weightage: HT caps weightage
* @vht_caps_weightage: VHT caps weightage
* @he_caps_weightage: HE caps weightage
* @chan_width_weightage: Channel width weightage
* @chan_band_weightage: Channel band weightage
* @nss_weightage: NSS weightage
* @beamforming_cap_weightage: Beamforming caps weightage
* @pcl_weightage: PCL weightage
* @channel_congestion_weightage: channel congestion weightage
* @oce_wan_weightage: OCE WAN metrics weightage
* @oce_ap_tx_pwr_weightage: OCE AP tx power weigtage
* @oce_subnet_id_weightage: OCE subnet id weigtage
*/
struct weight_config {
uint8_t rssi_weightage;
uint8_t ht_caps_weightage;
uint8_t vht_caps_weightage;
uint8_t he_caps_weightage;
uint8_t chan_width_weightage;
uint8_t chan_band_weightage;
uint8_t nss_weightage;
uint8_t beamforming_cap_weightage;
uint8_t pcl_weightage;
uint8_t channel_congestion_weightage;
uint8_t oce_wan_weightage;
uint8_t oce_ap_tx_pwr_weightage;
uint8_t oce_subnet_id_weightage;
};
/**
* struct rssi_cfg_score - rssi related params for scoring logic
* @best_rssi_threshold: RSSI weightage
* @good_rssi_threshold: HT caps weightage
* @bad_rssi_threshold: VHT caps weightage
* @good_rssi_pcnt: HE caps weightage
* @bad_rssi_pcnt: Channel width weightage
* @good_rssi_bucket_size: Channel band weightage
* @bad_rssi_bucket_size: NSS weightage
* @rssi_pref_5g_rssi_thresh: Beamforming caps weightage
*/
struct rssi_cfg_score {
uint32_t best_rssi_threshold;
uint32_t good_rssi_threshold;
uint32_t bad_rssi_threshold;
uint32_t good_rssi_pcnt;
uint32_t bad_rssi_pcnt;
uint32_t good_rssi_bucket_size;
uint32_t bad_rssi_bucket_size;
uint32_t rssi_pref_5g_rssi_thresh;
};
/**
* struct per_slot_scoring - define % score for differents slots for a
* scoring param.
* num_slot: number of slots in which the param will be divided.
* Max 15. index 0 is used for 'not_present. Num_slot will
* equally divide 100. e.g, if num_slot = 4 slot 0 = 0-25%, slot
* 1 = 26-50% slot 2 = 51-75%, slot 3 = 76-100%
* score_pcnt3_to_0: Conatins score percentage for slot 0-3
* BITS 0-7 :- the scoring pcnt when not present
* BITS 8-15 :- SLOT_1
* BITS 16-23 :- SLOT_2
* BITS 24-31 :- SLOT_3
* score_pcnt7_to_4: Conatins score percentage for slot 4-7
* BITS 0-7 :- SLOT_4
* BITS 8-15 :- SLOT_5
* BITS 16-23 :- SLOT_6
* BITS 24-31 :- SLOT_7
* score_pcnt11_to_8: Conatins score percentage for slot 8-11
* BITS 0-7 :- SLOT_8
* BITS 8-15 :- SLOT_9
* BITS 16-23 :- SLOT_10
* BITS 24-31 :- SLOT_11
* score_pcnt15_to_12: Conatins score percentage for slot 12-15
* BITS 0-7 :- SLOT_12
* BITS 8-15 :- SLOT_13
* BITS 16-23 :- SLOT_14
* BITS 24-31 :- SLOT_15
*/
struct per_slot_scoring {
uint32_t num_slot;
uint32_t score_pcnt3_to_0;
uint32_t score_pcnt7_to_4;
uint32_t score_pcnt11_to_8;
uint32_t score_pcnt15_to_12;
};
/**
* struct scoring_config - Scoring related configuration
* @weight_cfg: weigtage config for config
* @rssi_score: Rssi related config for scoring config
* @esp_qbss_scoring: esp and qbss related scoring config
* @oce_wan_scoring: oce related scoring config
* @bandwidth_weight_per_index: BW wight per index
* @nss_weight_per_index: nss weight per index
* @band_weight_per_index: band weight per index
* @cb_mode_24G: cb mode supprted for 2.4Ghz
* @cb_mode_5G: cb mode supprted for 5Ghz
* @nss: Number of NSS the device support
* @ht_cap: If dev is configured as HT capable
* @vht_cap:If dev is configured as VHT capable
* @he_cap: If dev is configured as HE capable
* @vht_24G_cap:If dev is configured as VHT capable for 2.4Ghz
* @beamformee_cap:If dev is configured as BF capable
*/
struct scoring_config {
struct weight_config weight_cfg;
struct rssi_cfg_score rssi_score;
struct per_slot_scoring esp_qbss_scoring;
struct per_slot_scoring oce_wan_scoring;
uint32_t bandwidth_weight_per_index;
uint32_t nss_weight_per_index;
uint32_t band_weight_per_index;
uint8_t cb_mode_24G;
uint8_t cb_mode_5G;
uint8_t vdev_nss_24g;
uint8_t vdev_nss_5g;
uint8_t ht_cap:1,
vht_cap:1,
he_cap:1,
vht_24G_cap:1,
beamformee_cap:1;
};
#define WLAN_SCAN_FILTER_NUM_SSID 5
#define WLAN_SCAN_FILTER_NUM_BSSID 5
@@ -615,7 +458,7 @@ struct fils_filter_info {
};
/**
* @bss_scoring_required :- flag to bypass scoring filtered results
* struct scan_filter: scan filter
* @enable_adaptive_11r: flag to check if adaptive 11r ini is enabled
* @age_threshold: If set return entry which are newer than the age_threshold
* @p2p_results: If only p2p entries is required
@@ -629,7 +472,6 @@ struct fils_filter_info {
* @num_of_mc_enc_type: number of multicast enc type
* @pmf_cap: Pmf capability
* @ignore_pmf_cap: Ignore pmf capability match
* @num_of_pcl_channels: number of pcl channels
* @bss_type: bss type BSS/IBSS etc
* @dot11_mode: operating modes 0 mean any
* 11a , 11g, 11n , 11ac , 11b etc
@@ -647,13 +489,10 @@ struct fils_filter_info {
* @auth_type: auth type list
* @enc_type: unicast enc type list
* @mc_enc_type: multicast cast enc type list
* @pcl_freq_list: PCL channel frequency list, frequency unit: MHz
* @fils_scan_filter: FILS info
* @pcl_weight_list: PCL Weight list
* @bssid_hint: Mac address of bssid_hint
*/
struct scan_filter {
bool bss_scoring_required;
bool enable_adaptive_11r;
qdf_time_t age_threshold;
uint32_t p2p_results;
@@ -666,7 +505,6 @@ struct scan_filter {
uint32_t num_of_mc_enc_type;
enum wlan_pmf_cap pmf_cap;
bool ignore_pmf_cap;
uint32_t num_of_pcl_channels;
enum wlan_bss_type bss_type;
enum wlan_phymode dot11_mode;
enum wlan_band band;
@@ -682,9 +520,7 @@ struct scan_filter {
enum wlan_auth_type auth_type[WLAN_NUM_OF_SUPPORT_AUTH_TYPE];
enum wlan_enc_type enc_type[WLAN_NUM_OF_ENCRYPT_TYPE];
enum wlan_enc_type mc_enc_type[WLAN_NUM_OF_ENCRYPT_TYPE];
uint32_t pcl_freq_list[NUM_CHANNELS];
struct fils_filter_info fils_scan_filter;
uint8_t pcl_weight_list[NUM_CHANNELS];
struct qdf_mac_addr bssid_hint;
};
@@ -1399,12 +1235,10 @@ struct pno_scan_req_params {
* struct scan_user_cfg - user configuration required for for scan
* @ie_whitelist: probe req IE whitelist attrs
* @sta_miracast_mcc_rest_time: sta miracast mcc rest time
* @score_config: scoring logic configuration
*/
struct scan_user_cfg {
struct probe_req_whitelist_attr ie_whitelist;
uint32_t sta_miracast_mcc_rest_time;
struct scoring_config score_config;
};
/**

View File

@@ -990,8 +990,6 @@ wlan_scan_global_init(struct wlan_objmgr_psoc *psoc,
cfg_get(psoc, CFG_HONOUR_NL_SCAN_POLICY_FLAGS);
scan_obj->scan_def.enable_mac_spoofing =
cfg_get(psoc, CFG_ENABLE_MAC_ADDR_SPOOFING);
scan_obj->scan_def.is_bssid_hint_priority =
cfg_get(psoc, CFG_IS_BSSID_HINT_PRIORITY);
scan_obj->scan_def.extscan_adaptive_dwell_mode =
cfg_get(psoc, CFG_ADAPTIVE_EXTSCAN_DWELL_MODE);
@@ -1490,9 +1488,6 @@ QDF_STATUS ucfg_scan_update_user_config(struct wlan_objmgr_psoc *psoc,
scan_def->sta_miracast_mcc_rest_time =
scan_cfg->sta_miracast_mcc_rest_time;
qdf_mem_copy(&scan_def->score_config, &scan_cfg->score_config,
sizeof(struct scoring_config));
return QDF_STATUS_SUCCESS;
}