disp: msm: dsi: add new PHY and PLL version files

Change adds the new files for DSI PHY version 5 and 4nm
DSI PLL.

Change-Id: I97712d6ce53a60a6fae1c8331b6ba9a5d17b8d34
Signed-off-by: Shashank Babu Chinta Venkata <quic_schintav@quicinc.com>
Bu işleme şunda yer alıyor:
Shashank Babu Chinta Venkata
2022-01-06 10:59:37 -08:00
ebeveyn e7c09f0092
işleme 122df95255
9 değiştirilmiş dosya ile 2750 ekleme ve 6 silme

Dosyayı Görüntüle

@@ -198,11 +198,13 @@ msm_drm-$(CONFIG_DRM_MSM_DSI) += dsi/dsi_phy.o \
dsi/dsi_phy.o \
dsi/dsi_phy_hw_v3_0.o \
dsi/dsi_phy_hw_v4_0.o \
dsi/dsi_phy_hw_v5_0.o \
dsi/dsi_phy_timing_calc.o \
dsi/dsi_phy_timing_v3_0.o \
dsi/dsi_phy_timing_v4_0.o \
dsi/dsi_pll.o \
dsi/dsi_pll_5nm.o \
dsi/dsi_pll_4nm.o \
dsi/dsi_ctrl_hw_cmn.o \
dsi/dsi_ctrl_hw_2_2.o \
dsi/dsi_ctrl.o \

Dosyayı Görüntüle

@@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/errno.h>
@@ -231,6 +232,35 @@ static void dsi_catalog_phy_4_0_init(struct dsi_phy_hw *phy)
phy->ops.commit_phy_timing = dsi_phy_hw_v4_0_commit_phy_timing;
}
/**
* dsi_catalog_phy_5_0_init() - catalog init for DSI PHY 7nm
*/
static void dsi_catalog_phy_5_0_init(struct dsi_phy_hw *phy)
{
phy->ops.regulator_enable = NULL;
phy->ops.regulator_disable = NULL;
phy->ops.enable = dsi_phy_hw_v5_0_enable;
phy->ops.disable = dsi_phy_hw_v5_0_disable;
phy->ops.calculate_timing_params = dsi_phy_hw_calculate_timing_params;
phy->ops.ulps_ops.wait_for_lane_idle = dsi_phy_hw_v5_0_wait_for_lane_idle;
phy->ops.ulps_ops.ulps_request = dsi_phy_hw_v5_0_ulps_request;
phy->ops.ulps_ops.ulps_exit = dsi_phy_hw_v5_0_ulps_exit;
phy->ops.ulps_ops.get_lanes_in_ulps = dsi_phy_hw_v5_0_get_lanes_in_ulps;
phy->ops.ulps_ops.is_lanes_in_ulps = dsi_phy_hw_v5_0_is_lanes_in_ulps;
phy->ops.phy_timing_val = dsi_phy_hw_timing_val_v5_0;
phy->ops.phy_lane_reset = dsi_phy_hw_v5_0_lane_reset;
phy->ops.toggle_resync_fifo = dsi_phy_hw_v5_0_toggle_resync_fifo;
phy->ops.reset_clk_en_sel = dsi_phy_hw_v5_0_reset_clk_en_sel;
phy->ops.dyn_refresh_ops.dyn_refresh_config = dsi_phy_hw_v5_0_dyn_refresh_config;
phy->ops.dyn_refresh_ops.dyn_refresh_pipe_delay = dsi_phy_hw_v5_0_dyn_refresh_pipe_delay;
phy->ops.dyn_refresh_ops.dyn_refresh_helper = dsi_phy_hw_v5_0_dyn_refresh_helper;
phy->ops.dyn_refresh_ops.dyn_refresh_trigger_sel = dsi_phy_hw_v5_0_dyn_refresh_trigger_sel;
phy->ops.dyn_refresh_ops.cache_phy_timings = dsi_phy_hw_v5_0_cache_phy_timings;
phy->ops.set_continuous_clk = dsi_phy_hw_v5_0_set_continuous_clk;
phy->ops.commit_phy_timing = dsi_phy_hw_v5_0_commit_phy_timing;
}
/**
* dsi_catalog_phy_setup() - return catalog info for dsi phy hardware
* @ctrl: Pointer to DSI PHY hw object.
@@ -267,9 +297,11 @@ int dsi_catalog_phy_setup(struct dsi_phy_hw *phy,
case DSI_PHY_VERSION_4_1:
case DSI_PHY_VERSION_4_2:
case DSI_PHY_VERSION_4_3:
case DSI_PHY_VERSION_5_2:
dsi_catalog_phy_4_0_init(phy);
break;
case DSI_PHY_VERSION_5_2:
dsi_catalog_phy_5_0_init(phy);
break;
default:
return -ENOTSUPP;
}
@@ -291,6 +323,10 @@ int dsi_catalog_phy_pll_setup(struct dsi_phy_hw *phy, u32 pll_ver)
phy->ops.configure = dsi_pll_5nm_configure;
phy->ops.pll_toggle = dsi_pll_5nm_toggle;
break;
case DSI_PLL_VERSION_4NM:
phy->ops.configure = dsi_pll_4nm_configure;
phy->ops.pll_toggle = dsi_pll_4nm_toggle;
break;
default:
phy->ops.configure = NULL;
phy->ops.pll_toggle = NULL;

Dosyayı Görüntüle

@@ -1,6 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#ifndef _DSI_CATALOG_H_
@@ -126,6 +127,24 @@ void dsi_phy_hw_v4_0_set_continuous_clk(struct dsi_phy_hw *phy, bool enable);
void dsi_phy_hw_v4_0_commit_phy_timing(struct dsi_phy_hw *phy,
struct dsi_phy_per_lane_cfgs *timing);
/* Definitions for 4nm PHY hardware driver */
void dsi_phy_hw_v5_0_enable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg);
void dsi_phy_hw_v5_0_disable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg);
int dsi_phy_hw_v5_0_wait_for_lane_idle(struct dsi_phy_hw *phy, u32 lanes);
void dsi_phy_hw_v5_0_ulps_request(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes);
void dsi_phy_hw_v5_0_ulps_exit(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg, u32 lanes);
u32 dsi_phy_hw_v5_0_get_lanes_in_ulps(struct dsi_phy_hw *phy);
bool dsi_phy_hw_v5_0_is_lanes_in_ulps(u32 lanes, u32 ulps_lanes);
int dsi_phy_hw_timing_val_v5_0(struct dsi_phy_per_lane_cfgs *timing_cfg, u32 *timing_val,
u32 size);
int dsi_phy_hw_v5_0_lane_reset(struct dsi_phy_hw *phy);
void dsi_phy_hw_v5_0_toggle_resync_fifo(struct dsi_phy_hw *phy);
void dsi_phy_hw_v5_0_reset_clk_en_sel(struct dsi_phy_hw *phy);
void dsi_phy_hw_v5_0_set_continuous_clk(struct dsi_phy_hw *phy, bool enable);
void dsi_phy_hw_v5_0_commit_phy_timing(struct dsi_phy_hw *phy,
struct dsi_phy_per_lane_cfgs *timing);
/* DSI controller common ops */
u32 dsi_ctrl_hw_cmn_get_interrupt_status(struct dsi_ctrl_hw *ctrl);
u32 dsi_ctrl_hw_cmn_poll_dma_status(struct dsi_ctrl_hw *ctrl);
@@ -279,6 +298,16 @@ void dsi_phy_hw_v4_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy,
int dsi_phy_hw_v4_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
u32 *dst, u32 size);
void dsi_phy_hw_v5_0_dyn_refresh_trigger_sel(struct dsi_phy_hw *phy,
bool is_master);
void dsi_phy_hw_v5_0_dyn_refresh_helper(struct dsi_phy_hw *phy, u32 offset);
void dsi_phy_hw_v5_0_dyn_refresh_config(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool is_master);
void dsi_phy_hw_v5_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy,
struct dsi_dyn_clk_delay *delay);
int dsi_phy_hw_v5_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
u32 *dst, u32 size);
void dsi_ctrl_hw_22_configure_cmddma_window(struct dsi_ctrl_hw *ctrl,
struct dsi_ctrl_cmd_dma_info *cmd,
u32 line_no, u32 window);
@@ -290,6 +319,8 @@ u32 dsi_ctrl_hw_22_log_line_count(struct dsi_ctrl_hw *ctrl, bool cmd_mode);
int dsi_catalog_phy_pll_setup(struct dsi_phy_hw *phy, u32 pll_ver);
int dsi_pll_5nm_configure(void *pll, bool commit);
int dsi_pll_5nm_toggle(void *pll, bool prepare);
int dsi_pll_4nm_configure(void *pll, bool commit);
int dsi_pll_4nm_toggle(void *pll, bool prepare);
void dsi_ctrl_hw_22_configure_splitlink(struct dsi_ctrl_hw *ctrl,
struct dsi_host_common_cfg *common_cfg, u32 sublink);

Dosyayı Görüntüle

@@ -1,6 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#ifndef _DSI_PHY_HW_H_
@@ -50,11 +51,13 @@ enum dsi_phy_version {
/**
* enum dsi_pll_version - DSI PHY PLL version enumeration
* @DSI_PLL_VERSION_4NM: 4nm PLL
* @DSI_PLL_VERSION_5NM: 5nm PLL
* @DSI_PLL_VERSION_10NM: 10nm PLL
* @DSI_PLL_VERSION_UNKNOWN: Unknown PLL version
*/
enum dsi_pll_version {
DSI_PLL_VERSION_4NM,
DSI_PLL_VERSION_5NM,
DSI_PLL_VERSION_10NM,
DSI_PLL_VERSION_UNKNOWN

881
msm/dsi/dsi_phy_hw_v5_0.c Normal dosya
Dosyayı Görüntüle

@@ -0,0 +1,881 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/math64.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "dsi_hw.h"
#include "dsi_defs.h"
#include "dsi_phy_hw.h"
#include "dsi_catalog.h"
#define DSIPHY_CMN_REVISION_ID0 0x000
#define DSIPHY_CMN_REVISION_ID1 0x004
#define DSIPHY_CMN_REVISION_ID2 0x008
#define DSIPHY_CMN_REVISION_ID3 0x00C
#define DSIPHY_CMN_CLK_CFG0 0x010
#define DSIPHY_CMN_CLK_CFG1 0x014
#define DSIPHY_CMN_GLBL_CTRL 0x018
#define DSIPHY_CMN_RBUF_CTRL 0x01C
#define DSIPHY_CMN_VREG_CTRL_0 0x020
#define DSIPHY_CMN_CTRL_0 0x024
#define DSIPHY_CMN_CTRL_1 0x028
#define DSIPHY_CMN_CTRL_2 0x02C
#define DSIPHY_CMN_CTRL_3 0x030
#define DSIPHY_CMN_LANE_CFG0 0x034
#define DSIPHY_CMN_LANE_CFG1 0x038
#define DSIPHY_CMN_PLL_CNTRL 0x03C
#define DSIPHY_CMN_DPHY_SOT 0x040
#define DSIPHY_CMN_LANE_CTRL0 0x0A0
#define DSIPHY_CMN_LANE_CTRL1 0x0A4
#define DSIPHY_CMN_LANE_CTRL2 0x0A8
#define DSIPHY_CMN_LANE_CTRL3 0x0AC
#define DSIPHY_CMN_LANE_CTRL4 0x0B0
#define DSIPHY_CMN_TIMING_CTRL_0 0x0B4
#define DSIPHY_CMN_TIMING_CTRL_1 0x0B8
#define DSIPHY_CMN_TIMING_CTRL_2 0x0Bc
#define DSIPHY_CMN_TIMING_CTRL_3 0x0C0
#define DSIPHY_CMN_TIMING_CTRL_4 0x0C4
#define DSIPHY_CMN_TIMING_CTRL_5 0x0C8
#define DSIPHY_CMN_TIMING_CTRL_6 0x0CC
#define DSIPHY_CMN_TIMING_CTRL_7 0x0D0
#define DSIPHY_CMN_TIMING_CTRL_8 0x0D4
#define DSIPHY_CMN_TIMING_CTRL_9 0x0D8
#define DSIPHY_CMN_TIMING_CTRL_10 0x0DC
#define DSIPHY_CMN_TIMING_CTRL_11 0x0E0
#define DSIPHY_CMN_TIMING_CTRL_12 0x0E4
#define DSIPHY_CMN_TIMING_CTRL_13 0x0E8
#define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0 0x0EC
#define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_1 0x0F0
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL 0x0F4
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL 0x0F8
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_MID_CTRL 0x0FC
#define DSIPHY_CMN_GLBL_LPTX_STR_CTRL 0x100
#define DSIPHY_CMN_GLBL_PEMPH_CTRL_0 0x104
#define DSIPHY_CMN_GLBL_PEMPH_CTRL_1 0x108
#define DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL 0x10C
#define DSIPHY_CMN_VREG_CTRL_1 0x110
#define DSIPHY_CMN_CTRL_4 0x114
#define DSIPHY_CMN_PHY_STATUS 0x140
#define DSIPHY_CMN_LANE_STATUS0 0x148
#define DSIPHY_CMN_LANE_STATUS1 0x14C
#define DSIPHY_CMN_GLBL_DIGTOP_SPARE10 0x1AC
#define DSIPHY_CMN_SL_DSI_LANE_CTRL1 0x1B4
/* n = 0..3 for data lanes and n = 4 for clock lane */
#define DSIPHY_LNX_CFG0(n) (0x200 + (0x80 * (n)))
#define DSIPHY_LNX_CFG1(n) (0x204 + (0x80 * (n)))
#define DSIPHY_LNX_CFG2(n) (0x208 + (0x80 * (n)))
#define DSIPHY_LNX_TEST_DATAPATH(n) (0x20C + (0x80 * (n)))
#define DSIPHY_LNX_PIN_SWAP(n) (0x210 + (0x80 * (n)))
#define DSIPHY_LNX_LPRX_CTRL(n) (0x214 + (0x80 * (n)))
#define DSIPHY_LNX_TX_DCTRL(n) (0x218 + (0x80 * (n)))
/* dynamic refresh control registers */
#define DSI_DYN_REFRESH_CTRL (0x000)
#define DSI_DYN_REFRESH_PIPE_DELAY (0x004)
#define DSI_DYN_REFRESH_PIPE_DELAY2 (0x008)
#define DSI_DYN_REFRESH_PLL_DELAY (0x00C)
#define DSI_DYN_REFRESH_STATUS (0x010)
#define DSI_DYN_REFRESH_PLL_CTRL0 (0x014)
#define DSI_DYN_REFRESH_PLL_CTRL1 (0x018)
#define DSI_DYN_REFRESH_PLL_CTRL2 (0x01C)
#define DSI_DYN_REFRESH_PLL_CTRL3 (0x020)
#define DSI_DYN_REFRESH_PLL_CTRL4 (0x024)
#define DSI_DYN_REFRESH_PLL_CTRL5 (0x028)
#define DSI_DYN_REFRESH_PLL_CTRL6 (0x02C)
#define DSI_DYN_REFRESH_PLL_CTRL7 (0x030)
#define DSI_DYN_REFRESH_PLL_CTRL8 (0x034)
#define DSI_DYN_REFRESH_PLL_CTRL9 (0x038)
#define DSI_DYN_REFRESH_PLL_CTRL10 (0x03C)
#define DSI_DYN_REFRESH_PLL_CTRL11 (0x040)
#define DSI_DYN_REFRESH_PLL_CTRL12 (0x044)
#define DSI_DYN_REFRESH_PLL_CTRL13 (0x048)
#define DSI_DYN_REFRESH_PLL_CTRL14 (0x04C)
#define DSI_DYN_REFRESH_PLL_CTRL15 (0x050)
#define DSI_DYN_REFRESH_PLL_CTRL16 (0x054)
#define DSI_DYN_REFRESH_PLL_CTRL17 (0x058)
#define DSI_DYN_REFRESH_PLL_CTRL18 (0x05C)
#define DSI_DYN_REFRESH_PLL_CTRL19 (0x060)
#define DSI_DYN_REFRESH_PLL_CTRL20 (0x064)
#define DSI_DYN_REFRESH_PLL_CTRL21 (0x068)
#define DSI_DYN_REFRESH_PLL_CTRL22 (0x06C)
#define DSI_DYN_REFRESH_PLL_CTRL23 (0x070)
#define DSI_DYN_REFRESH_PLL_CTRL24 (0x074)
#define DSI_DYN_REFRESH_PLL_CTRL25 (0x078)
#define DSI_DYN_REFRESH_PLL_CTRL26 (0x07C)
#define DSI_DYN_REFRESH_PLL_CTRL27 (0x080)
#define DSI_DYN_REFRESH_PLL_CTRL28 (0x084)
#define DSI_DYN_REFRESH_PLL_CTRL29 (0x088)
#define DSI_DYN_REFRESH_PLL_CTRL30 (0x08C)
#define DSI_DYN_REFRESH_PLL_CTRL31 (0x090)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR (0x094)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR2 (0x098)
static int dsi_phy_hw_v5_0_is_pll_on(struct dsi_phy_hw *phy)
{
u32 data = 0;
data = DSI_R32(phy, DSIPHY_CMN_PLL_CNTRL);
mb(); /*make sure read happened */
return (data & BIT(0));
}
static bool dsi_phy_hw_v5_0_is_split_link_enabled(struct dsi_phy_hw *phy)
{
u32 reg = 0;
reg = DSI_R32(phy, DSIPHY_CMN_GLBL_CTRL);
mb(); /*make sure read happened */
return (reg & BIT(5));
}
static void dsi_phy_hw_v5_0_config_lpcdrx(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool enable)
{
int phy_lane_0 = dsi_phy_conv_logical_to_phy_lane(&cfg->lane_map, DSI_LOGICAL_LANE_0);
/*
* LPRX and CDRX need to enabled only for physical data lane
* corresponding to the logical data lane 0
*/
if (enable)
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), cfg->strength.lane[phy_lane_0][1]);
else
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), 0);
}
static void dsi_phy_hw_v5_0_lane_swap_config(struct dsi_phy_hw *phy,
struct dsi_lane_map *lane_map)
{
DSI_W32(phy, DSIPHY_CMN_LANE_CFG0,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_0] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_1] << 4)));
DSI_W32(phy, DSIPHY_CMN_LANE_CFG1,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_2] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_3] << 4)));
}
static void dsi_phy_hw_v5_0_lane_settings(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int i;
u8 tx_dctrl[] = {0x40, 0x40, 0x40, 0x46, 0x41};
bool split_link_enabled;
u32 lanes_per_sublink;
split_link_enabled = cfg->split_link.enabled;
lanes_per_sublink = cfg->split_link.lanes_per_sublink;
/* Strength ctrl settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
/*
* Disable LPRX and CDRX for all lanes. And later on, it will
* be only enabled for the physical data lane corresponding
* to the logical data lane 0
*/
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(i), 0);
DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(i), 0x0);
}
dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, true);
/* other settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
DSI_W32(phy, DSIPHY_LNX_CFG0(i), cfg->lanecfg.lane[i][0]);
DSI_W32(phy, DSIPHY_LNX_CFG1(i), cfg->lanecfg.lane[i][1]);
DSI_W32(phy, DSIPHY_LNX_CFG2(i), cfg->lanecfg.lane[i][2]);
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(i), tx_dctrl[i]);
}
/* remove below check if cphy splitlink is enabled */
if (split_link_enabled && (cfg->phy_type == DSI_PHY_TYPE_CPHY))
return;
/* Configure the splitlink clock lane with clk lane settings */
if (split_link_enabled) {
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(5), 0x0);
DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(5), 0x0);
DSI_W32(phy, DSIPHY_LNX_CFG0(5), cfg->lanecfg.lane[4][0]);
DSI_W32(phy, DSIPHY_LNX_CFG1(5), cfg->lanecfg.lane[4][1]);
DSI_W32(phy, DSIPHY_LNX_CFG2(5), cfg->lanecfg.lane[4][2]);
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(5), tx_dctrl[4]);
}
}
void dsi_phy_hw_v5_0_commit_phy_timing(struct dsi_phy_hw *phy,
struct dsi_phy_per_lane_cfgs *timing)
{
/* Commit DSI PHY timings */
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_1, timing->lane_v4[1]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_2, timing->lane_v4[2]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_3, timing->lane_v4[3]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_12, timing->lane_v4[12]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_13, timing->lane_v4[13]);
}
/**
* cphy_enable() - Enable CPHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
static void dsi_phy_hw_cphy_enable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg)
{
struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
u32 data;
/* For C-PHY, no low power settings for lower clk rate */
u32 glbl_str_swi_cal_sel_ctrl = 0;
u32 glbl_hstx_str_ctrl_0 = 0;
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
/* Assert PLL core reset */
DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* program CMN_CTRL_4 for minor_ver greater than 2 chipsets*/
DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
/* Configure PHY lane swap */
dsi_phy_hw_v5_0_lane_swap_config(phy, &cfg->lane_map);
DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, BIT(6));
/* Enable LDO */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, 0x45);
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x41);
DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL, glbl_str_swi_cal_sel_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x11);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
/* Remove power down from all blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x17);
switch (cfg->pll_source) {
case DSI_PLL_SOURCE_STANDALONE:
case DSI_PLL_SOURCE_NATIVE:
data = 0x0; /* internal PLL */
break;
case DSI_PLL_SOURCE_NON_NATIVE:
data = 0x1; /* external PLL */
break;
default:
break;
}
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
/* DSI PHY timings */
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
/* DSI lane settings */
dsi_phy_hw_v5_0_lane_settings(phy, cfg);
DSI_PHY_DBG(phy, "C-Phy enabled\n");
}
/**
* dphy_enable() - Enable DPHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
static void dsi_phy_hw_dphy_enable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg)
{
struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
u32 data;
bool less_than_1500_mhz = false;
u32 vreg_ctrl_0 = 0;
u32 glbl_str_swi_cal_sel_ctrl = 0;
u32 glbl_hstx_str_ctrl_0 = 0;
u32 glbl_rescode_top_ctrl = 0;
u32 glbl_rescode_bot_ctrl = 0;
bool split_link_enabled;
u32 lanes_per_sublink;
/* Alter PHY configurations if data rate less than 1.5GHZ*/
if (cfg->bit_clk_rate_hz <= 1500000000)
less_than_1500_mhz = true;
vreg_ctrl_0 = 0x44;
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c;
glbl_str_swi_cal_sel_ctrl = 0x00;
glbl_hstx_str_ctrl_0 = 0x88;
split_link_enabled = cfg->split_link.enabled;
lanes_per_sublink = cfg->split_link.lanes_per_sublink;
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
if (split_link_enabled) {
data = DSI_R32(phy, DSIPHY_CMN_GLBL_CTRL);
/* set SPLIT_LINK_ENABLE in global control */
DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, (data | BIT(5)));
}
/* Assert PLL core reset */
DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* program CMN_CTRL_4 for minor_ver greater than 2 chipsets*/
DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
/* Configure PHY lane swap */
dsi_phy_hw_v5_0_lane_swap_config(phy, &cfg->lane_map);
/* Enable LDO */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x19);
DSI_W32(phy, DSIPHY_CMN_CTRL_3, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
glbl_str_swi_cal_sel_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
glbl_rescode_top_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
glbl_rescode_bot_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
if (split_link_enabled) {
if (lanes_per_sublink == 1) {
/* remove Lane1 and Lane3 configs */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xed);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x35);
} else {
/* enable all together with sublink clock */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xff);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x3F);
}
DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, 0x03);
} else {
/* Remove power down from all blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x1F);
}
/* Select full-rate mode */
DSI_W32(phy, DSIPHY_CMN_CTRL_2, 0x40);
switch (cfg->pll_source) {
case DSI_PLL_SOURCE_STANDALONE:
case DSI_PLL_SOURCE_NATIVE:
data = 0x0; /* internal PLL */
break;
case DSI_PLL_SOURCE_NON_NATIVE:
data = 0x1; /* external PLL */
break;
default:
break;
}
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
/* DSI PHY timings */
dsi_phy_hw_v5_0_commit_phy_timing(phy, timing);
/* DSI lane settings */
dsi_phy_hw_v5_0_lane_settings(phy, cfg);
DSI_PHY_DBG(phy, "D-Phy enabled\n");
}
/**
* enable() - Enable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
void dsi_phy_hw_v5_0_enable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int rc = 0;
u32 status;
u32 const delay_us = 5;
u32 const timeout_us = 1000;
if (dsi_phy_hw_v5_0_is_pll_on(phy))
DSI_PHY_WARN(phy, "PLL turned on before configuring PHY\n");
/* Request for REFGEN ready */
DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
udelay(500);
/* wait for REFGEN READY */
rc = DSI_READ_POLL_TIMEOUT_ATOMIC(phy, DSIPHY_CMN_PHY_STATUS,
status, (status & BIT(0)), delay_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "Ref gen not ready. Aborting\n");
return;
}
if (cfg->phy_type == DSI_PHY_TYPE_CPHY)
dsi_phy_hw_cphy_enable(phy, cfg);
else /* Default PHY type is DPHY */
dsi_phy_hw_dphy_enable(phy, cfg);
}
/**
* disable() - Disable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
*/
void dsi_phy_hw_v5_0_disable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
u32 data = 0;
if (dsi_phy_hw_v5_0_is_pll_on(phy))
DSI_PHY_WARN(phy, "Turning OFF PHY while PLL is on\n");
dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, false);
/* Turn off REFGEN Vote */
DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
wmb();
/* Delay to ensure HW removes vote before PHY shut down */
udelay(2);
data = DSI_R32(phy, DSIPHY_CMN_CTRL_0);
/* disable all lanes and splitlink clk lane*/
data &= ~0x9F;
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0);
/* Turn off all PHY blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x00);
/* make sure phy is turned off */
wmb();
DSI_PHY_DBG(phy, "Phy disabled\n");
}
void dsi_phy_hw_v5_0_toggle_resync_fifo(struct dsi_phy_hw *phy)
{
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* ensure that the FIFO is off */
wmb();
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x1);
/* ensure that the FIFO is toggled back on */
wmb();
}
void dsi_phy_hw_v5_0_reset_clk_en_sel(struct dsi_phy_hw *phy)
{
u32 data = 0;
/*Turning off CLK_EN_SEL after retime buffer sync */
data = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
data &= ~BIT(4);
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, data);
/* ensure that clk_en_sel bit is turned off */
wmb();
}
int dsi_phy_hw_v5_0_wait_for_lane_idle(
struct dsi_phy_hw *phy, u32 lanes)
{
int rc = 0, val = 0;
u32 stop_state_mask = 0;
u32 const sleep_us = 10;
u32 const timeout_us = 100;
bool split_link_enabled = dsi_phy_hw_v5_0_is_split_link_enabled(phy);
stop_state_mask = BIT(4); /* clock lane */
if (split_link_enabled)
stop_state_mask |= BIT(5);
if (lanes & DSI_DATA_LANE_0)
stop_state_mask |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
stop_state_mask |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
stop_state_mask |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
stop_state_mask |= BIT(3);
DSI_PHY_DBG(phy, "polling for lanes to be in stop state, mask=0x%08x\n", stop_state_mask);
rc = DSI_READ_POLL_TIMEOUT(phy, DSIPHY_CMN_LANE_STATUS1, val,
((val & stop_state_mask) == stop_state_mask),
sleep_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "lanes not in stop state, LANE_STATUS=0x%08x\n", val);
return rc;
}
return 0;
}
void dsi_phy_hw_v5_0_ulps_request(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0, sl_lane_ctrl1 = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
if (cfg->split_link.enabled)
reg |= BIT(7);
if (cfg->force_clk_lane_hs) {
reg |= BIT(5) | BIT(6);
if (cfg->split_link.enabled) {
sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
sl_lane_ctrl1 |= BIT(2);
DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
}
}
/*
* ULPS entry request. Wait for short time to make sure
* that the lanes enter ULPS. Recommended as per HPG.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
usleep_range(100, 110);
/* disable LPRX and CDRX */
dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, false);
DSI_PHY_DBG(phy, "ULPS requested for lanes 0x%x\n", lanes);
}
int dsi_phy_hw_v5_0_lane_reset(struct dsi_phy_hw *phy)
{
int ret = 0, loop = 10, u_dly = 200;
u32 ln_status = 0;
while ((ln_status != 0x1f) && loop) {
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x1f);
wmb(); /* ensure register is committed */
loop--;
udelay(u_dly);
ln_status = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS1);
DSI_PHY_DBG(phy, "trial no: %d\n", loop);
}
if (!loop)
DSI_PHY_DBG(phy, "could not reset phy lanes\n");
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x0);
wmb(); /* ensure register is committed */
return ret;
}
void dsi_phy_hw_v5_0_ulps_exit(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0, sl_lane_ctrl1 = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
if (cfg->split_link.enabled)
reg |= BIT(5);
/* enable LPRX and CDRX */
dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, true);
/* ULPS exit request */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, reg);
usleep_range(1000, 1010);
/* Clear ULPS request flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, 0);
/* Clear ULPS exit flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, 0);
/*
* Sometimes when exiting ULPS, it is possible that some DSI
* lanes are not in the stop state which could lead to DSI
* commands not going through. To avoid this, force the lanes
* to be in stop state.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, reg);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0);
usleep_range(100, 110);
if (cfg->force_clk_lane_hs) {
reg = BIT(5) | BIT(6);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
if (cfg->split_link.enabled) {
sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
sl_lane_ctrl1 |= BIT(2);
DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
}
}
}
u32 dsi_phy_hw_v5_0_get_lanes_in_ulps(struct dsi_phy_hw *phy)
{
u32 lanes = 0;
lanes = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS0);
DSI_PHY_DBG(phy, "lanes in ulps = 0x%x\n", lanes);
return lanes;
}
bool dsi_phy_hw_v5_0_is_lanes_in_ulps(u32 lanes, u32 ulps_lanes)
{
if (lanes & ulps_lanes)
return false;
return true;
}
int dsi_phy_hw_timing_val_v5_0(struct dsi_phy_per_lane_cfgs *timing_cfg,
u32 *timing_val, u32 size)
{
int i = 0;
if (size != DSI_PHY_TIMING_V4_SIZE) {
DSI_ERR("Unexpected timing array size %d\n", size);
return -EINVAL;
}
for (i = 0; i < size; i++)
timing_cfg->lane_v4[i] = timing_val[i];
return 0;
}
void dsi_phy_hw_v5_0_dyn_refresh_config(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool is_master)
{
u32 reg;
bool is_cphy = (cfg->phy_type == DSI_PHY_TYPE_CPHY) ? true : false;
if (is_master) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL19,
DSIPHY_CMN_TIMING_CTRL_0, DSIPHY_CMN_TIMING_CTRL_1,
cfg->timing.lane_v4[0], cfg->timing.lane_v4[1]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL20,
DSIPHY_CMN_TIMING_CTRL_2, DSIPHY_CMN_TIMING_CTRL_3,
cfg->timing.lane_v4[2], cfg->timing.lane_v4[3]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL21,
DSIPHY_CMN_TIMING_CTRL_4, DSIPHY_CMN_TIMING_CTRL_5,
cfg->timing.lane_v4[4], cfg->timing.lane_v4[5]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL22,
DSIPHY_CMN_TIMING_CTRL_6, DSIPHY_CMN_TIMING_CTRL_7,
cfg->timing.lane_v4[6], cfg->timing.lane_v4[7]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL23,
DSIPHY_CMN_TIMING_CTRL_8, DSIPHY_CMN_TIMING_CTRL_9,
cfg->timing.lane_v4[8], cfg->timing.lane_v4[9]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL24,
DSIPHY_CMN_TIMING_CTRL_10, DSIPHY_CMN_TIMING_CTRL_11,
cfg->timing.lane_v4[10], cfg->timing.lane_v4[11]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL25,
DSIPHY_CMN_TIMING_CTRL_12, DSIPHY_CMN_TIMING_CTRL_13,
cfg->timing.lane_v4[12], cfg->timing.lane_v4[13]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL26,
DSIPHY_CMN_CTRL_0, DSIPHY_CMN_LANE_CTRL0, 0x7f,
is_cphy ? 0x17 : 0x1f);
} else {
reg = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
reg &= ~BIT(5);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL0,
DSIPHY_CMN_CLK_CFG1, DSIPHY_CMN_PLL_CNTRL, reg, 0x0);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL1,
DSIPHY_CMN_RBUF_CTRL, DSIPHY_CMN_TIMING_CTRL_0, 0x0,
cfg->timing.lane_v4[0]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL2,
DSIPHY_CMN_TIMING_CTRL_1, DSIPHY_CMN_TIMING_CTRL_2,
cfg->timing.lane_v4[1], cfg->timing.lane_v4[2]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL3,
DSIPHY_CMN_TIMING_CTRL_3, DSIPHY_CMN_TIMING_CTRL_4,
cfg->timing.lane_v4[3], cfg->timing.lane_v4[4]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL4,
DSIPHY_CMN_TIMING_CTRL_5, DSIPHY_CMN_TIMING_CTRL_6,
cfg->timing.lane_v4[5], cfg->timing.lane_v4[6]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL5,
DSIPHY_CMN_TIMING_CTRL_7, DSIPHY_CMN_TIMING_CTRL_8,
cfg->timing.lane_v4[7], cfg->timing.lane_v4[8]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL6,
DSIPHY_CMN_TIMING_CTRL_9, DSIPHY_CMN_TIMING_CTRL_10,
cfg->timing.lane_v4[9], cfg->timing.lane_v4[10]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL7,
DSIPHY_CMN_TIMING_CTRL_11, DSIPHY_CMN_TIMING_CTRL_12,
cfg->timing.lane_v4[11], cfg->timing.lane_v4[12]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL8,
DSIPHY_CMN_TIMING_CTRL_13, DSIPHY_CMN_CTRL_0,
cfg->timing.lane_v4[13], 0x7f);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL9,
DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_2,
is_cphy ? 0x17 : 0x1f, 0x40);
/*
* fill with dummy register writes since controller will blindly
* send these values to DSI PHY.
*/
reg = DSI_DYN_REFRESH_PLL_CTRL11;
while (reg <= DSI_DYN_REFRESH_PLL_CTRL29) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, reg, DSIPHY_CMN_LANE_CTRL0,
DSIPHY_CMN_CTRL_0, is_cphy ? 0x17 : 0x1f, 0x7f);
reg += 0x4;
}
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_UPPER_ADDR, 0);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_UPPER_ADDR2, 0);
}
wmb(); /* make sure all registers are updated */
}
void dsi_phy_hw_v5_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy, struct dsi_dyn_clk_delay *delay)
{
if (!delay)
return;
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY, delay->pipe_delay);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY2, delay->pipe_delay2);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_DELAY, delay->pll_delay);
}
void dsi_phy_hw_v5_0_dyn_refresh_trigger_sel(struct dsi_phy_hw *phy, bool is_master)
{
u32 reg;
/*
* Dynamic refresh will take effect at next mdp flush event.
* This makes sure that any update to frame timings together
* with dfps will take effect in one vsync at next mdp flush.
*/
if (is_master) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(17);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
}
void dsi_phy_hw_v5_0_dyn_refresh_helper(struct dsi_phy_hw *phy, u32 offset)
{
u32 reg;
/*
* if no offset is mentioned then this means we want to clear
* the dynamic refresh ctrl register which is the last step
* of dynamic refresh sequence.
*/
if (!offset) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg &= ~(BIT(0) | BIT(8) | BIT(13) | BIT(16) | BIT(17));
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is cleared */
return;
}
if (offset & BIT(DYN_REFRESH_INTF_SEL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(13);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SYNC_MODE)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(16);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SWI_CTRL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(0);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SW_TRIGGER)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(8);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is triggered */
}
}
int dsi_phy_hw_v5_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
u32 *dst, u32 size)
{
int i;
if (!timings || !dst || !size)
return -EINVAL;
if (size != DSI_PHY_TIMING_V4_SIZE) {
DSI_ERR("size mis-match\n");
return -EINVAL;
}
for (i = 0; i < size; i++)
dst[i] = timings->lane_v4[i];
return 0;
}
void dsi_phy_hw_v5_0_set_continuous_clk(struct dsi_phy_hw *phy, bool enable)
{
u32 reg = 0, sl_lane_ctrl1 = 0;
bool is_split_link_enabled = dsi_phy_hw_v5_0_is_split_link_enabled(phy);
reg = DSI_R32(phy, DSIPHY_CMN_LANE_CTRL1);
if (enable)
reg |= BIT(5) | BIT(6);
else
reg &= ~(BIT(5) | BIT(6));
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
if (is_split_link_enabled) {
sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
if (enable)
sl_lane_ctrl1 |= BIT(2);
else
sl_lane_ctrl1 &= ~BIT(2);
DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
}
wmb(); /* make sure request is set */
}

Dosyayı Görüntüle

@@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
@@ -23,6 +24,9 @@ static int dsi_pll_clock_register(struct platform_device *pdev,
case DSI_PLL_5NM:
rc = dsi_pll_clock_register_5nm(pdev, pll_res);
break;
case DSI_PLL_4NM:
rc = dsi_pll_clock_register_4nm(pdev, pll_res);
break;
default:
rc = -EINVAL;
break;
@@ -265,12 +269,10 @@ int dsi_pll_init(struct platform_device *pdev, struct dsi_pll_resource **pll)
DSI_PLL_INFO(pll_res, "DSI pll label = %s\n", label);
/**
* Currently, Only supports 5nm. Will add
* support for other versions as needed.
*/
if (!strcmp(label, "dsi_pll_5nm"))
if (!strcmp(label, "dsi_pll_4nm"))
pll_res->pll_revision = DSI_PLL_4NM;
else if (!strcmp(label, "dsi_pll_5nm"))
pll_res->pll_revision = DSI_PLL_5NM;
else
return -ENOTSUPP;

Dosyayı Görüntüle

@@ -1,6 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#ifndef __DSI_PLL_H
@@ -59,6 +60,7 @@ struct lpfr_cfg {
};
enum {
DSI_PLL_4NM,
DSI_PLL_5NM,
DSI_PLL_10NM,
DSI_UNKNOWN_PLL,
@@ -203,6 +205,7 @@ static inline struct dsi_pll_clk *to_pll_clk_hw(struct clk_hw *hw)
int dsi_pll_clock_register_5nm(struct platform_device *pdev,
struct dsi_pll_resource *pll_res);
int dsi_pll_clock_register_4nm(struct platform_device *pdev, struct dsi_pll_resource *pll_res);
int dsi_pll_init(struct platform_device *pdev,
struct dsi_pll_resource **pll_res);

1487
msm/dsi/dsi_pll_4nm.c Normal dosya

Dosya farkı çok büyük olduğundan ihmal edildi Fark Yükle

299
msm/dsi/dsi_pll_4nm.h Normal dosya
Dosyayı Görüntüle

@@ -0,0 +1,299 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include "dsi_pll.h"
/* Register Offsets from PLL base address */
#define PLL_ANALOG_CONTROLS_ONE 0x0000
#define PLL_ANALOG_CONTROLS_TWO 0x0004
#define PLL_INT_LOOP_SETTINGS 0x0008
#define PLL_INT_LOOP_SETTINGS_TWO 0x000C
#define PLL_ANALOG_CONTROLS_THREE 0x0010
#define PLL_ANALOG_CONTROLS_FOUR 0x0014
#define PLL_ANALOG_CONTROLS_FIVE 0x0018
#define PLL_INT_LOOP_CONTROLS 0x001C
#define PLL_DSM_DIVIDER 0x0020
#define PLL_FEEDBACK_DIVIDER 0x0024
#define PLL_SYSTEM_MUXES 0x0028
#define PLL_FREQ_UPDATE_CONTROL_OVERRIDES 0x002C
#define PLL_CMODE 0x0030
#define PLL_PSM_CTRL 0x0034
#define PLL_RSM_CTRL 0x0038
#define PLL_VCO_TUNE_MAP 0x003C
#define PLL_PLL_CNTRL 0x0040
#define PLL_CALIBRATION_SETTINGS 0x0044
#define PLL_BAND_SEL_CAL_TIMER_LOW 0x0048
#define PLL_BAND_SEL_CAL_TIMER_HIGH 0x004C
#define PLL_BAND_SEL_CAL_SETTINGS 0x0050
#define PLL_BAND_SEL_MIN 0x0054
#define PLL_BAND_SEL_MAX 0x0058
#define PLL_BAND_SEL_PFILT 0x005C
#define PLL_BAND_SEL_IFILT 0x0060
#define PLL_BAND_SEL_CAL_SETTINGS_TWO 0x0064
#define PLL_BAND_SEL_CAL_SETTINGS_THREE 0x0068
#define PLL_BAND_SEL_CAL_SETTINGS_FOUR 0x006C
#define PLL_BAND_SEL_ICODE_HIGH 0x0070
#define PLL_BAND_SEL_ICODE_LOW 0x0074
#define PLL_FREQ_DETECT_SETTINGS_ONE 0x0078
#define PLL_FREQ_DETECT_THRESH 0x007C
#define PLL_FREQ_DET_REFCLK_HIGH 0x0080
#define PLL_FREQ_DET_REFCLK_LOW 0x0084
#define PLL_FREQ_DET_PLLCLK_HIGH 0x0088
#define PLL_FREQ_DET_PLLCLK_LOW 0x008C
#define PLL_PFILT 0x0090
#define PLL_IFILT 0x0094
#define PLL_PLL_GAIN 0x0098
#define PLL_ICODE_LOW 0x009C
#define PLL_ICODE_HIGH 0x00A0
#define PLL_LOCKDET 0x00A4
#define PLL_OUTDIV 0x00A8
#define PLL_FASTLOCK_CONTROL 0x00AC
#define PLL_PASS_OUT_OVERRIDE_ONE 0x00B0
#define PLL_PASS_OUT_OVERRIDE_TWO 0x00B4
#define PLL_CORE_OVERRIDE 0x00B8
#define PLL_CORE_INPUT_OVERRIDE 0x00BC
#define PLL_RATE_CHANGE 0x00C0
#define PLL_PLL_DIGITAL_TIMERS 0x00C4
#define PLL_PLL_DIGITAL_TIMERS_TWO 0x00C8
#define PLL_DECIMAL_DIV_START 0x00CC
#define PLL_FRAC_DIV_START_LOW 0x00D0
#define PLL_FRAC_DIV_START_MID 0x00D4
#define PLL_FRAC_DIV_START_HIGH 0x00D8
#define PLL_DEC_FRAC_MUXES 0x00DC
#define PLL_DECIMAL_DIV_START_1 0x00E0
#define PLL_FRAC_DIV_START_LOW_1 0x00E4
#define PLL_FRAC_DIV_START_MID_1 0x00E8
#define PLL_FRAC_DIV_START_HIGH_1 0x00EC
#define PLL_DECIMAL_DIV_START_2 0x00F0
#define PLL_FRAC_DIV_START_LOW_2 0x00F4
#define PLL_FRAC_DIV_START_MID_2 0x00F8
#define PLL_FRAC_DIV_START_HIGH_2 0x00FC
#define PLL_MASH_CONTROL 0x0100
#define PLL_SSC_STEPSIZE_LOW 0x0104
#define PLL_SSC_STEPSIZE_HIGH 0x0108
#define PLL_SSC_DIV_PER_LOW 0x010C
#define PLL_SSC_DIV_PER_HIGH 0x0110
#define PLL_SSC_ADJPER_LOW 0x0114
#define PLL_SSC_ADJPER_HIGH 0x0118
#define PLL_SSC_MUX_CONTROL 0x011C
#define PLL_SSC_STEPSIZE_LOW_1 0x0120
#define PLL_SSC_STEPSIZE_HIGH_1 0x0124
#define PLL_SSC_DIV_PER_LOW_1 0x0128
#define PLL_SSC_DIV_PER_HIGH_1 0x012C
#define PLL_SSC_ADJPER_LOW_1 0x0130
#define PLL_SSC_ADJPER_HIGH_1 0x0134
#define PLL_SSC_STEPSIZE_LOW_2 0x0138
#define PLL_SSC_STEPSIZE_HIGH_2 0x013C
#define PLL_SSC_DIV_PER_LOW_2 0x0140
#define PLL_SSC_DIV_PER_HIGH_2 0x0144
#define PLL_SSC_ADJPER_LOW_2 0x0148
#define PLL_SSC_ADJPER_HIGH_2 0x014C
#define PLL_SSC_CONTROL 0x0150
#define PLL_PLL_OUTDIV_RATE 0x0154
#define PLL_PLL_LOCKDET_RATE_1 0x0158
#define PLL_PLL_LOCKDET_RATE_2 0x015C
#define PLL_PLL_PROP_GAIN_RATE_1 0x0160
#define PLL_PLL_PROP_GAIN_RATE_2 0x0164
#define PLL_PLL_BAND_SEL_RATE_1 0x0168
#define PLL_PLL_BAND_SEL_RATE_2 0x016C
#define PLL_PLL_INT_GAIN_IFILT_BAND_1 0x0170
#define PLL_PLL_INT_GAIN_IFILT_BAND_2 0x0174
#define PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 0x0178
#define PLL_PLL_FL_INT_GAIN_PFILT_BAND_2 0x017C
#define PLL_PLL_FASTLOCK_EN_BAND 0x0180
#define PLL_FREQ_TUNE_ACCUM_INIT_MID 0x0184
#define PLL_FREQ_TUNE_ACCUM_INIT_HIGH 0x0188
#define PLL_FREQ_TUNE_ACCUM_INIT_MUX 0x018C
#define PLL_PLL_LOCK_OVERRIDE 0x0190
#define PLL_PLL_LOCK_DELAY 0x0194
#define PLL_PLL_LOCK_MIN_DELAY 0x0198
#define PLL_CLOCK_INVERTERS 0x019C
#define PLL_SPARE_AND_JPC_OVERRIDES 0x01A0
#define PLL_BIAS_CONTROL_1 0x01A4
#define PLL_BIAS_CONTROL_2 0x01A8
#define PLL_ALOG_OBSV_BUS_CTRL_1 0x01AC
#define PLL_COMMON_STATUS_ONE 0x01B0
#define PLL_COMMON_STATUS_TWO 0x01B4
#define PLL_BAND_SEL_CAL 0x01B8
#define PLL_ICODE_ACCUM_STATUS_LOW 0x01BC
#define PLL_ICODE_ACCUM_STATUS_HIGH 0x01C0
#define PLL_FD_OUT_LOW 0x01C4
#define PLL_FD_OUT_HIGH 0x01C8
#define PLL_ALOG_OBSV_BUS_STATUS_1 0x01CC
#define PLL_PLL_MISC_CONFIG 0x01D0
#define PLL_FLL_CONFIG 0x01D4
#define PLL_FLL_FREQ_ACQ_TIME 0x01D8
#define PLL_FLL_CODE0 0x01DC
#define PLL_FLL_CODE1 0x01E0
#define PLL_FLL_GAIN0 0x01E4
#define PLL_FLL_GAIN1 0x01E8
#define PLL_SW_RESET 0x01EC
#define PLL_FAST_PWRUP 0x01F0
#define PLL_LOCKTIME0 0x01F4
#define PLL_LOCKTIME1 0x01F8
#define PLL_DEBUG_BUS_SEL 0x01FC
#define PLL_DEBUG_BUS0 0x0200
#define PLL_DEBUG_BUS1 0x0204
#define PLL_DEBUG_BUS2 0x0208
#define PLL_DEBUG_BUS3 0x020C
#define PLL_ANALOG_FLL_CONTROL_OVERRIDES 0x0210
#define PLL_VCO_CONFIG 0x0214
#define PLL_VCO_CAL_CODE1_MODE0_STATUS 0x0218
#define PLL_VCO_CAL_CODE1_MODE1_STATUS 0x021C
#define PLL_RESET_SM_STATUS 0x0220
#define PLL_TDC_OFFSET 0x0224
#define PLL_PS3_PWRDOWN_CONTROLS 0x0228
#define PLL_PS4_PWRDOWN_CONTROLS 0x022C
#define PLL_PLL_RST_CONTROLS 0x0230
#define PLL_GEAR_BAND_SELECT_CONTROLS 0x0234
#define PLL_PSM_CLK_CONTROLS 0x0238
#define PLL_SYSTEM_MUXES_2 0x023C
#define PLL_VCO_CONFIG_1 0x0240
#define PLL_VCO_CONFIG_2 0x0244
#define PLL_CLOCK_INVERTERS_1 0x0248
#define PLL_CLOCK_INVERTERS_2 0x024C
#define PLL_CMODE_1 0x0250
#define PLL_CMODE_2 0x0254
#define PLL_ANALOG_CONTROLS_FIVE_1 0x0258
#define PLL_ANALOG_CONTROLS_FIVE_2 0x025C
#define PLL_PERF_OPTIMIZE 0x0260
/* Register Offsets from PHY base address */
#define PHY_CMN_CLK_CFG0 0x010
#define PHY_CMN_CLK_CFG1 0x014
#define PHY_CMN_GLBL_CTRL 0x018
#define PHY_CMN_RBUF_CTRL 0x01C
#define PHY_CMN_CTRL_0 0x024
#define PHY_CMN_CTRL_2 0x02C
#define PHY_CMN_CTRL_3 0x030
#define PHY_CMN_PLL_CNTRL 0x03C
#define PHY_CMN_GLBL_DIGTOP_SPARE4 0x128
/* Bit definition of SSC control registers */
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
#define SSC_FREQ_UPDATE BIT(2)
#define SSC_FREQ_UPDATE_MUX BIT(3)
#define SSC_UPDATE_SSC BIT(4)
#define SSC_UPDATE_SSC_MUX BIT(5)
#define SSC_START BIT(6)
#define SSC_START_MUX BIT(7)
/* Dynamic Refresh Control Registers */
#define DSI_DYNAMIC_REFRESH_PLL_CTRL0 (0x014)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL1 (0x018)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL2 (0x01C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL3 (0x020)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL4 (0x024)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL5 (0x028)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL6 (0x02C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL7 (0x030)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL8 (0x034)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL9 (0x038)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL10 (0x03C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL11 (0x040)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL12 (0x044)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL13 (0x048)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL14 (0x04C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL15 (0x050)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL16 (0x054)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL17 (0x058)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL18 (0x05C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL19 (0x060)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL20 (0x064)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL21 (0x068)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL22 (0x06C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL23 (0x070)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL24 (0x074)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL25 (0x078)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL26 (0x07C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL27 (0x080)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL28 (0x084)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL29 (0x088)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL30 (0x08C)
#define DSI_DYNAMIC_REFRESH_PLL_CTRL31 (0x090)
#define DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR (0x094)
#define DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR2 (0x098)
#define DSI_PHY_TO_PLL_OFFSET (0x500)
enum {
DSI_PLL_0,
DSI_PLL_1,
DSI_PLL_MAX
};
struct dsi_pll_div_table pll_4nm_dphy_lb[] = {
{27270000, 30000000, 2, 11},
{30000000, 33330000, 4, 5},
{33330000, 37500000, 2, 9},
{37500000, 40000000, 8, 2},
{40000000, 42860000, 1, 15},
{42860000, 46150000, 2, 7},
{46150000, 50000000, 1, 13},
{50000000, 54550000, 4, 3},
{54550000, 60000000, 1, 11},
{60000000, 66670000, 2, 5},
{66670000, 75000000, 1, 9},
{75000000, 85710000, 8, 1},
{85710000, 100000000, 1, 7},
{100000000, 120000000, 2, 3},
{120000000, 150000000, 1, 5},
{150000000, 200000000, 4, 1},
{200000000, 300000000, 1, 3},
{300000000, 600000000, 2, 1},
{600000000, 1500000000, 1, 1}
};
struct dsi_pll_div_table pll_4nm_dphy_hb[] = {
{68180000, 75000000, 2, 11},
{75000000, 83330000, 4, 5},
{83330000, 93750000, 2, 9},
{93750000, 100000000, 8, 2},
{100000000, 107140000, 1, 15},
{107140000, 115380000, 2, 7},
{115380000, 125000000, 1, 13},
{125000000, 136360000, 4, 3},
{136360000, 150000000, 1, 11},
{150000000, 166670000, 2, 5},
{166670000, 187500000, 1, 9},
{187500000, 214290000, 8, 1},
{214290000, 250000000, 1, 7},
{250000000, 300000000, 2, 3},
{300000000, 375000000, 1, 5},
{375000000, 500000000, 4, 1},
{500000000, 750000000, 1, 3},
{750000000, 1500000000, 2, 1},
{1500000000, 5000000000, 1, 1}
};
struct dsi_pll_div_table pll_4nm_cphy_lb[] = {
{30000000, 37500000, 4, 5},
{37500000, 50000000, 8, 2},
{50000000, 60000000, 4, 3},
{60000000, 75000000, 2, 5},
{75000000, 100000000, 8, 1},
{100000000, 120000000, 2, 3},
{120000000, 150000000, 1, 5},
{150000000, 200000000, 4, 1},
{200000000, 300000000, 1, 3},
{300000000, 600000000, 2, 1},
{600000000, 1500000000, 1, 1}
};
struct dsi_pll_div_table pll_4nm_cphy_hb[] = {
{75000000, 93750000, 4, 5},
{93750000, 12500000, 8, 2},
{125000000, 150000000, 4, 3},
{150000000, 187500000, 2, 5},
{187500000, 250000000, 8, 1},
{250000000, 300000000, 2, 3},
{300000000, 375000000, 1, 5},
{375000000, 500000000, 4, 1},
{500000000, 750000000, 1, 3},
{750000000, 1500000000, 2, 1},
{1500000000, 5000000000, 1, 1}
};