asoc: codecs: Enable impedance detection for rouleur codec

Implement the impedance calculation logic for
rouleur codec.

Change-Id: I2b62e8c1109f949a12d2f31b4c1f6035a1bc2bba
Signed-off-by: Aditya Bavanari <abavanar@codeaurora.org>
This commit is contained in:
Aditya Bavanari
2020-03-28 13:09:08 +05:30
committed by Akhil Karuturi
parent 313aa17ac4
commit 050e740320
6 changed files with 157 additions and 218 deletions

View File

@@ -22,20 +22,15 @@
#define ROULEUR_ZDET_SUPPORTED true
/* Z value defined in milliohm */
#define ROULEUR_ZDET_VAL_32 32000
#define ROULEUR_ZDET_VAL_400 400000
#define ROULEUR_ZDET_VAL_1200 1200000
#define ROULEUR_ZDET_VAL_100K 100000000
/* Z floating defined in ohms */
#define ROULEUR_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
#define ROULEUR_ZDET_NUM_MEASUREMENTS 900
#define ROULEUR_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
#define ROULEUR_MBHC_GET_X1(x) (x & 0x3FFF)
/* Z value compared in milliOhm */
#define ROULEUR_MBHC_IS_SECOND_RAMP_REQUIRED(z) ((z > 400000) || (z < 32000))
#define ROULEUR_MBHC_ZDET_CONST (86 * 16384)
#define ROULEUR_MBHC_MOISTURE_RREF R_24_KOHM
#define ROULEUR_ZDET_NUM_MEASUREMENTS 100
#define ROULEUR_ZDET_RMAX 1280000
#define ROULEUR_ZDET_C1 7500000
#define ROULEUR_ZDET_C2 187
#define ROULEUR_ZDET_C3 4500
/* Cross connection thresholds in mV */
#define ROULEUR_HPHL_CROSS_CONN_THRESHOLD 200
@@ -157,9 +152,6 @@ struct rouleur_mbhc_zdet_param {
u16 ldo_ctl;
u16 noff;
u16 nshift;
u16 btn5;
u16 btn6;
u16 btn7;
};
static int rouleur_mbhc_request_irq(struct snd_soc_component *component,
@@ -380,174 +372,180 @@ static int rouleur_mbhc_micb_ctrl_threshold_mic(
return rc;
}
static inline void rouleur_mbhc_get_result_params(struct rouleur_priv *rouleur,
s16 *d1_a, u16 noff,
int32_t *zdet)
static void rouleur_mbhc_get_result_params(struct rouleur_priv *rouleur,
struct snd_soc_component *component,
int32_t *zdet)
{
int i;
int val = 0, val1 = 0;
s16 c1 = 0;
s32 x1 = 0, d1 = 0;
int32_t denom;
int minCode_param[] = {
3277, 1639, 820, 410, 205, 103, 52, 26
};
int zcode = 0, zcode1 = 0, zdet_cal_result = 0, zdet_est_range = 0;
int noff = 0, ndac = 14;
int zdet_cal_coeff = 0, div_ratio = 0;
int num = 0, denom = 0;
/* Charge enable and wait for zcode to be updated */
regmap_update_bits(rouleur->regmap, ROULEUR_ANA_MBHC_ZDET, 0x20, 0x20);
for (i = 0; i < ROULEUR_ZDET_NUM_MEASUREMENTS; i++) {
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_2, &val);
if (val & 0x80)
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_2, &zcode);
if (zcode & 0x80)
break;
usleep_range(200, 210);
}
val = val << 0x8;
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_1, &val1);
val |= val1;
regmap_update_bits(rouleur->regmap, ROULEUR_ANA_MBHC_ZDET, 0x20, 0x00);
x1 = ROULEUR_MBHC_GET_X1(val);
c1 = ROULEUR_MBHC_GET_C1(val);
/* If ramp is not complete, give additional 5ms */
if ((c1 < 2) && x1)
usleep_range(5000, 5050);
if (!c1 || !x1) {
/* If zcode updation is not complete, give additional 10ms */
if (!(zcode & 0x80))
usleep_range(10000, 10100);
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_2, &zcode);
if (!(zcode & 0x80)) {
dev_dbg(rouleur->dev,
"%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
__func__, c1, x1);
goto ramp_down;
"%s: Impedance detect calculation error, zcode=0x%x\n",
__func__, zcode);
regmap_update_bits(rouleur->regmap, ROULEUR_ANA_MBHC_ZDET,
0x20, 0x00);
return;
}
d1 = d1_a[c1];
denom = (x1 * d1) - (1 << (14 - noff));
zcode = zcode << 0x8;
zcode = zcode & 0x3FFF;
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_1, &zcode1);
zcode |= zcode1;
dev_dbg(rouleur->dev,
"%s: zcode: %d, zcode1: %d\n", __func__, zcode, zcode1);
/* Calculate calibration coefficient */
zdet_cal_result = (snd_soc_component_read32(component,
ROULEUR_ANA_MBHC_ZDET_CALIB_RESULT)) & 0x1F;
zdet_cal_coeff = ROULEUR_ZDET_C1 /
((ROULEUR_ZDET_C2 * zdet_cal_result) + ROULEUR_ZDET_C3);
/* Rload calculation */
zdet_est_range = (snd_soc_component_read32(component,
ROULEUR_ANA_MBHC_ZDET_CALIB_RESULT) & 0x60) >> 5;
dev_dbg(rouleur->dev,
"%s: zdet_cal_result: %d, zdet_cal_coeff: %d, zdet_est_range: %d\n",
__func__, zdet_cal_result, zdet_cal_coeff, zdet_est_range);
switch (zdet_est_range) {
case 0:
default:
noff = 0;
div_ratio = 320;
break;
case 1:
noff = 0;
div_ratio = 64;
break;
case 2:
noff = 4;
div_ratio = 64;
break;
case 3:
noff = 5;
div_ratio = 40;
break;
}
num = zdet_cal_coeff * ROULEUR_ZDET_RMAX;
denom = ((zcode * div_ratio * 100) - (1 << (ndac - noff)) * 1000);
dev_dbg(rouleur->dev,
"%s: num: %d, denom: %d\n", __func__, num, denom);
if (denom > 0)
*zdet = (ROULEUR_MBHC_ZDET_CONST * 1000) / denom;
else if (x1 < minCode_param[noff])
*zdet = (int32_t) ((num / denom) * 1000);
else
*zdet = ROULEUR_ZDET_FLOATING_IMPEDANCE;
dev_dbg(rouleur->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
__func__, d1, c1, x1, *zdet);
ramp_down:
i = 0;
while (x1) {
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_1, &val);
regmap_read(rouleur->regmap, ROULEUR_ANA_MBHC_RESULT_2, &val1);
val = val << 0x8;
val |= val1;
x1 = ROULEUR_MBHC_GET_X1(val);
i++;
if (i == ROULEUR_ZDET_NUM_MEASUREMENTS)
break;
}
dev_dbg(rouleur->dev, "%s: z_val=%d(milliOhm)\n",
__func__, *zdet);
/* Start discharge */
regmap_update_bits(rouleur->regmap, ROULEUR_ANA_MBHC_ZDET, 0x20, 0x00);
}
#if 0
static void rouleur_mbhc_zdet_ramp(struct snd_soc_component *component,
struct rouleur_mbhc_zdet_param *zdet_param,
int32_t *zl, int32_t *zr, s16 *d1_a)
static void rouleur_mbhc_zdet_start(struct snd_soc_component *component,
int32_t *zl, int32_t *zr)
{
struct rouleur_priv *rouleur = dev_get_drvdata(component->dev);
int32_t zdet = 0;
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_ZDET_ANA_CTL,
0x70, zdet_param->ldo_ctl << 4);
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_BTN5, 0xFC,
zdet_param->btn5);
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_BTN6, 0xFC,
zdet_param->btn6);
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_BTN7, 0xFC,
zdet_param->btn7);
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_ZDET_ANA_CTL,
0x0F, zdet_param->noff);
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_ZDET_RAMP_CTL,
0x0F, zdet_param->nshift);
if (!zl)
goto z_right;
/* Start impedance measurement for HPH_L */
/* HPHL pull down switch to force OFF */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_HPHPA_CNP_CTL_2, 0x30, 0x00);
/* Averaging enable for reliable results */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET_ANA_CTL, 0x80, 0x80);
/* ZDET left measurement enable */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET, 0x80, 0x80);
dev_dbg(rouleur->dev, "%s: ramp for HPH_L, noff = %d\n",
__func__, zdet_param->noff);
rouleur_mbhc_get_result_params(rouleur, d1_a, zdet_param->noff, &zdet);
/* Calculate the left Rload result */
rouleur_mbhc_get_result_params(rouleur, component, &zdet);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET, 0x80, 0x00);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET_ANA_CTL, 0x80, 0x00);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_HPHPA_CNP_CTL_2, 0x30, 0x20);
*zl = zdet;
z_right:
if (!zr)
return;
/* Start impedance measurement for HPH_R */
/* HPHR pull down switch to force OFF */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_HPHPA_CNP_CTL_2, 0x0C, 0x00);
/* Averaging enable for reliable results */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET_ANA_CTL, 0x80, 0x80);
/* ZDET right measurement enable */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET, 0x40, 0x40);
dev_dbg(rouleur->dev, "%s: ramp for HPH_R, noff = %d\n",
__func__, zdet_param->noff);
rouleur_mbhc_get_result_params(rouleur, d1_a, zdet_param->noff, &zdet);
/* Calculate the right Rload result */
rouleur_mbhc_get_result_params(rouleur, component, &zdet);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET, 0x40, 0x00);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ZDET_ANA_CTL, 0x80, 0x00);
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_HPHPA_CNP_CTL_2, 0x0C, 0x08);
*zr = zdet;
}
static inline void rouleur_wcd_mbhc_qfuse_cal(
struct snd_soc_component *component,
int32_t *z_val, int flag_l_r)
{
s16 q1;
int q1_cal;
if (*z_val < (ROULEUR_ZDET_VAL_400/1000))
q1 = snd_soc_component_read32(component,
ROULEUR_DIGITAL_EFUSE_REG_23 + (2 * flag_l_r));
else
q1 = snd_soc_component_read32(component,
ROULEUR_DIGITAL_EFUSE_REG_24 + (2 * flag_l_r));
if (q1 & 0x80)
q1_cal = (10000 - ((q1 & 0x7F) * 25));
else
q1_cal = (10000 + (q1 * 25));
if (q1_cal > 0)
*z_val = ((*z_val) * 10000) / q1_cal;
}
static void rouleur_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl,
uint32_t *zr)
{
struct snd_soc_component *component = mbhc->component;
struct rouleur_priv *rouleur = dev_get_drvdata(component->dev);
s16 reg0, reg1, reg2, reg3, reg4;
s16 reg0;
int32_t z1L, z1R, z1Ls;
int zMono, z_diff1, z_diff2;
bool is_fsm_disable = false;
struct rouleur_mbhc_zdet_param zdet_param[] = {
{4, 0, 4, 0x08, 0x14, 0x18}, /* < 32ohm */
{2, 0, 3, 0x18, 0x7C, 0x90}, /* 32ohm < Z < 400ohm */
{1, 4, 5, 0x18, 0x7C, 0x90}, /* 400ohm < Z < 1200ohm */
{1, 6, 7, 0x18, 0x7C, 0x90}, /* >1200ohm */
};
struct rouleur_mbhc_zdet_param *zdet_param_ptr = NULL;
s16 d1_a[][4] = {
{0, 30, 90, 30},
{0, 30, 30, 5},
{0, 30, 30, 5},
{0, 30, 30, 5},
};
s16 *d1 = NULL;
WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
reg0 = snd_soc_component_read32(component, ROULEUR_ANA_MBHC_BTN5);
reg1 = snd_soc_component_read32(component, ROULEUR_ANA_MBHC_BTN6);
reg2 = snd_soc_component_read32(component, ROULEUR_ANA_MBHC_BTN7);
reg3 = snd_soc_component_read32(component, ROULEUR_MBHC_CTL_CLK);
reg4 = snd_soc_component_read32(component,
ROULEUR_ANA_MBHC_ZDET_ANA_CTL);
reg0 = snd_soc_component_read32(component, ROULEUR_ANA_MBHC_ELECT);
if (snd_soc_component_read32(component, ROULEUR_ANA_MBHC_ELECT) &
0x80) {
if (reg0 & 0x80) {
is_fsm_disable = true;
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ELECT, 0x80, 0x00);
}
/* Enable electrical bias */
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_ELECT,
0x01, 0x01);
/* Enable codec main bias */
rouleur_global_mbias_enable(component);
/* Enable RCO clock */
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_CTL_1,
0x80, 0x80);
/* For NO-jack, disable L_DET_EN before Z-det measurements */
if (mbhc->hphl_swh)
regmap_update_bits(rouleur->regmap,
@@ -557,79 +555,34 @@ static void rouleur_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl,
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_MECH, 0x01, 0x00);
/* Disable surge protection before impedance detection.
/*
* Disable surge protection before impedance detection.
* This is done to give correct value for high impedance.
*/
regmap_update_bits(rouleur->regmap,
ROULEUR_HPH_SURGE_HPHLR_SURGE_EN, 0xC0, 0x00);
snd_soc_component_update_bits(component, ROULEUR_ANA_SURGE_EN,
0xC0, 0x00);
/* 1ms delay needed after disable surge protection */
usleep_range(1000, 1010);
/* First get impedance on Left */
d1 = d1_a[1];
zdet_param_ptr = &zdet_param[1];
rouleur_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
if (!ROULEUR_MBHC_IS_SECOND_RAMP_REQUIRED(z1L))
goto left_ch_impedance;
/* Second ramp for left ch */
if (z1L < ROULEUR_ZDET_VAL_32) {
zdet_param_ptr = &zdet_param[0];
d1 = d1_a[0];
} else if ((z1L > ROULEUR_ZDET_VAL_400) &&
(z1L <= ROULEUR_ZDET_VAL_1200)) {
zdet_param_ptr = &zdet_param[2];
d1 = d1_a[2];
} else if (z1L > ROULEUR_ZDET_VAL_1200) {
zdet_param_ptr = &zdet_param[3];
d1 = d1_a[3];
}
rouleur_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
left_ch_impedance:
/* Start of left ch impedance calculation */
rouleur_mbhc_zdet_start(component, &z1L, NULL);
if ((z1L == ROULEUR_ZDET_FLOATING_IMPEDANCE) ||
(z1L > ROULEUR_ZDET_VAL_100K)) {
(z1L > ROULEUR_ZDET_VAL_100K))
*zl = ROULEUR_ZDET_FLOATING_IMPEDANCE;
zdet_param_ptr = &zdet_param[1];
d1 = d1_a[1];
} else {
else
*zl = z1L/1000;
rouleur_wcd_mbhc_qfuse_cal(component, zl, 0);
}
dev_dbg(component->dev, "%s: impedance on HPH_L = %d(ohms)\n",
__func__, *zl);
/* Start of right impedance ramp and calculation */
rouleur_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
if (ROULEUR_MBHC_IS_SECOND_RAMP_REQUIRED(z1R)) {
if (((z1R > ROULEUR_ZDET_VAL_1200) &&
(zdet_param_ptr->noff == 0x6)) ||
((*zl) != ROULEUR_ZDET_FLOATING_IMPEDANCE))
goto right_ch_impedance;
/* Second ramp for right ch */
if (z1R < ROULEUR_ZDET_VAL_32) {
zdet_param_ptr = &zdet_param[0];
d1 = d1_a[0];
} else if ((z1R > ROULEUR_ZDET_VAL_400) &&
(z1R <= ROULEUR_ZDET_VAL_1200)) {
zdet_param_ptr = &zdet_param[2];
d1 = d1_a[2];
} else if (z1R > ROULEUR_ZDET_VAL_1200) {
zdet_param_ptr = &zdet_param[3];
d1 = d1_a[3];
}
rouleur_mbhc_zdet_ramp(component, zdet_param_ptr, NULL,
&z1R, d1);
}
right_ch_impedance:
/* Start of right ch impedance calculation */
rouleur_mbhc_zdet_start(component, NULL, &z1R);
if ((z1R == ROULEUR_ZDET_FLOATING_IMPEDANCE) ||
(z1R > ROULEUR_ZDET_VAL_100K)) {
(z1R > ROULEUR_ZDET_VAL_100K))
*zr = ROULEUR_ZDET_FLOATING_IMPEDANCE;
} else {
else
*zr = z1R/1000;
rouleur_wcd_mbhc_qfuse_cal(component, zr, 1);
}
dev_dbg(component->dev, "%s: impedance on HPH_R = %d(ohms)\n",
__func__, *zr);
@@ -651,24 +604,10 @@ right_ch_impedance:
mbhc->hph_type = WCD_MBHC_HPH_MONO;
goto zdet_complete;
}
snd_soc_component_update_bits(component, ROULEUR_HPH_R_ATEST,
0x02, 0x02);
snd_soc_component_update_bits(component, ROULEUR_HPH_PA_CTL2,
0x40, 0x01);
if (*zl < (ROULEUR_ZDET_VAL_32/1000))
rouleur_mbhc_zdet_ramp(component, &zdet_param[0], &z1Ls,
NULL, d1);
else
rouleur_mbhc_zdet_ramp(component, &zdet_param[1], &z1Ls,
NULL, d1);
snd_soc_component_update_bits(component, ROULEUR_HPH_PA_CTL2,
0x40, 0x00);
snd_soc_component_update_bits(component, ROULEUR_HPH_R_ATEST,
0x02, 0x00);
z1Ls /= 1000;
rouleur_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
/* Parallel of left Z and 9 ohm pull down resistor */
zMono = ((*zl) * 9) / ((*zl) + 9);
z1Ls = z1L/1000;
/* Parallel of left Z and 20 ohm pull down resistor */
zMono = ((*zl) * 20) / ((*zl) + 20);
z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
@@ -681,13 +620,10 @@ right_ch_impedance:
mbhc->hph_type = WCD_MBHC_HPH_MONO;
}
zdet_complete:
/* Enable surge protection again after impedance detection */
regmap_update_bits(rouleur->regmap,
ROULEUR_HPH_SURGE_HPHLR_SURGE_EN, 0xC0, 0xC0);
zdet_complete:
snd_soc_component_write(component, ROULEUR_ANA_MBHC_BTN5, reg0);
snd_soc_component_write(component, ROULEUR_ANA_MBHC_BTN6, reg1);
snd_soc_component_write(component, ROULEUR_ANA_MBHC_BTN7, reg2);
ROULEUR_ANA_SURGE_EN, 0xC0, 0xC0);
/* Turn on 100k pull down on HPHL */
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_MECH, 0x01, 0x01);
@@ -697,13 +633,14 @@ zdet_complete:
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_MECH, 0x80, 0x80);
snd_soc_component_write(component, ROULEUR_ANA_MBHC_ZDET_ANA_CTL, reg4);
snd_soc_component_write(component, ROULEUR_MBHC_CTL_CLK, reg3);
/* Restore electrical bias state */
snd_soc_component_update_bits(component, ROULEUR_ANA_MBHC_ELECT, 0x01,
reg0 >> 7);
if (is_fsm_disable)
regmap_update_bits(rouleur->regmap,
ROULEUR_ANA_MBHC_ELECT, 0x80, 0x80);
rouleur_global_mbias_disable(component);
}
#endif
static void rouleur_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
bool enable)
@@ -843,10 +780,10 @@ static void rouleur_mbhc_comp_autozero_control(struct wcd_mbhc *mbhc,
{
if (az_enable)
snd_soc_component_update_bits(mbhc->component,
ROULEUR_ANA_MBHC_MCLK, 0x08, 0x08);
ROULEUR_ANA_MBHC_CTL_CLK, 0x08, 0x08);
else
snd_soc_component_update_bits(mbhc->component,
ROULEUR_ANA_MBHC_MCLK, 0x08, 0x00);
ROULEUR_ANA_MBHC_CTL_CLK, 0x08, 0x00);
}
@@ -889,7 +826,7 @@ static const struct wcd_mbhc_cb mbhc_cb = {
.mbhc_micb_ramp_control = rouleur_mbhc_micb_ramp_control,
.get_hwdep_fw_cal = rouleur_get_hwdep_fw_cal,
.mbhc_micb_ctrl_thr_mic = rouleur_mbhc_micb_ctrl_threshold_mic,
//.compute_impedance = rouleur_wcd_mbhc_calc_impedance,
.compute_impedance = rouleur_wcd_mbhc_calc_impedance,
.mbhc_gnd_det_ctrl = rouleur_mbhc_gnd_det_ctrl,
.hph_pull_down_ctrl = rouleur_mbhc_hph_pull_down_ctrl,
.mbhc_moisture_config = rouleur_mbhc_moisture_config,